These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22049250)

  • 1. Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series.
    Cannon MJ; Percival DB; Caccia DC; Raymond GM; Bassingthwaighte JB
    Physica A; 1997 Jul; 241(3-4):606-626. PubMed ID: 22049250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deriving dispersional and scaled windowed variance analyses using the correlation function of discrete fractional Gaussian noise.
    Raymond GM; Bassingthwaighte JB
    Physica A; 1999 Mar; 265(1-2):85-96. PubMed ID: 23077376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological time series: distinguishing fractal noises from motions.
    Eke A; Hermán P; Bassingthwaighte JB; Raymond GM; Percival DB; Cannon M; Balla I; Ikrényi C
    Pflugers Arch; 2000 Feb; 439(4):403-15. PubMed ID: 10678736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods.
    Caccia DC; Percival D; Cannon MJ; Raymond G; Bassingthwaighte JB
    Physica A; 1997 Dec; 246(3-4):609-632. PubMed ID: 22049251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the dispersional analysis method for fractal time series.
    Bassingthwaighte JB; Raymond GM
    Ann Biomed Eng; 1995; 23(4):491-505. PubMed ID: 7486356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating maximum likelihood estimation methods to determine the Hurst coeficient.
    Kendziorski CM; Bassingthwaighte JB; Tonellato PJ
    Physica A; 1999 Nov; 273(3-4):439-451. PubMed ID: 22904595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating rescaled ranged analysis for time series.
    Bassingthwaighte JB; Raymond GM
    Ann Biomed Eng; 1994; 22(4):432-44. PubMed ID: 7998689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical representation of Gaussian processes in the A-T plane.
    Tarnopolski M
    Phys Rev E; 2019 Dec; 100(6-1):062144. PubMed ID: 31962435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified periodogram method for estimating the Hurst exponent of fractional Gaussian noise.
    Liu Y; Liu Y; Wang K; Jiang T; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066207. PubMed ID: 20365254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional Gaussian noise, functional MRI and Alzheimer's disease.
    Maxim V; Sendur L; Fadili J; Suckling J; Gould R; Howard R; Bullmore E
    Neuroimage; 2005 Mar; 25(1):141-58. PubMed ID: 15734351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A blind method for the estimation of the Hurst exponent in time series: theory and application.
    Esposti F; Ferrario M; Signorini MG
    Chaos; 2008 Sep; 18(3):033126. PubMed ID: 19045464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotation algorithm: generation of Gaussian self-similar stochastic processes.
    Vahabi M; Jafari GR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066704. PubMed ID: 23368075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive fractal analysis reveals limits to fractal scaling in center of pressure trajectories.
    Kuznetsov N; Bonnette S; Gao J; Riley MA
    Ann Biomed Eng; 2013 Aug; 41(8):1646-60. PubMed ID: 22956160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fractal dynamics of self-esteem and physical self.
    Delignières D; Fortes M; Ninot G
    Nonlinear Dynamics Psychol Life Sci; 2004 Oct; 8(4):479-510. PubMed ID: 15473949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path integrals for fractional Brownian motion and fractional Gaussian noise.
    Meerson B; Bénichou O; Oshanin G
    Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range correlations in rabbit brain neural activity.
    de la Fuente IM; Perez-Samartin AL; Martínez L; Garcia MA; Vera-Lopez A
    Ann Biomed Eng; 2006 Feb; 34(2):295-9. PubMed ID: 16450194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology groups of embedded fractional Brownian motion.
    Masoomy H; Tajik S; Movahed SMS
    Phys Rev E; 2022 Dec; 106(6-1):064115. PubMed ID: 36671107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data.
    von Wegner F; Laufs H; Tagliazucchi E
    Phys Rev E; 2018 Feb; 97(2-1):022415. PubMed ID: 29548241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.