These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 22049370)

  • 1. Analysis of using interpulse intervals to generate 128-bit biometric random binary sequences for securing wireless body sensor networks.
    Zhang GH; Poon CC; Zhang YT
    IEEE Trans Inf Technol Biomed; 2012 Jan; 16(1):176-82. PubMed ID: 22049370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heartbeats Based Biometric Random Binary Sequences Generation to Secure Wireless Body Sensor Networks.
    Pirbhulal S; Zhang H; Wu W; Mukhopadhyay SC; Zhang YT
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2751-2759. PubMed ID: 29993429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the timing information of heartbeats as an entity identifier to secure body sensor network.
    Bao SD; Poon CC; Zhang YT; Shen LF
    IEEE Trans Inf Technol Biomed; 2008 Nov; 12(6):772-9. PubMed ID: 19000958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-efficient key distribution using electrocardiograph biometric set for secure communications in wireless body healthcare networks.
    Shi J; Lam KY; Gu M; Li M; Chung SL
    J Med Syst; 2011 Oct; 35(5):745-53. PubMed ID: 20703727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Securing While Sampling in Wireless Body Area Networks With Application to Electrocardiography.
    Dautov R; Tsouri GR
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):135-42. PubMed ID: 25373134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple ECG Fiducial Points-Based Random Binary Sequence Generation for Securing Wireless Body Area Networks.
    Zheng G; Fang G; Shankaran R; Orgun MA; Zhou J; Qiao L; Saleem K
    IEEE J Biomed Health Inform; 2017 May; 21(3):655-663. PubMed ID: 27046882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wireless implantable sensor network system for in vivo monitoring of physiological signals.
    Fu X; Chen W; Ye S; Tu Y; Tang Y; Li D; Chen H; Jiang K
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):577-84. PubMed ID: 21536536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resource optimized TTSH-URA for multimedia stream authentication in swallowable-capsule-based wireless body sensor networks.
    Wang W; Wang C; Zhao M
    IEEE J Biomed Health Inform; 2014 Mar; 18(2):404-10. PubMed ID: 24608045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes.
    Mamaghanian H; Khaled N; Atienza D; Vandergheynst P
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2456-66. PubMed ID: 21606019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression in wearable sensor nodes: impacts of node topology.
    Imtiaz SA; Casson AJ; Rodriguez-Villegas E
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1080-90. PubMed ID: 24658233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OTP-Q encryption and Diffie-Hellman mutual authentication for e-healthcare data based on lightweight S-WBSN framework.
    Akilan SS; Sekar JR
    Technol Health Care; 2023; 31(6):2073-2090. PubMed ID: 37458053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyogram-based method to secure wireless body sensor networks for rehabilitation systems.
    Guanghe Zhang ; Samuel OW; Fanghua Liu ; Shixiong Chen ; Hui Zhou ; Haoshi Zhang ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1246-1249. PubMed ID: 29060102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust human activity and sensor location corecognition via sparse signal representation.
    Xu W; Zhang M; Sawchuk AA; Sarrafzadeh M
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3169-76. PubMed ID: 22875238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.
    Sampangi RV; Sampalli S
    Sensors (Basel); 2015 Sep; 15(9):23145-67. PubMed ID: 26389899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.
    Lai CF; Chen M; Pan JS; Youn CH; Chao HC
    IEEE J Biomed Health Inform; 2014 Mar; 18(2):457-66. PubMed ID: 24608051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a wireless implantable body sensor network in MICS band.
    Fang Q; Lee SY; Permana H; Ghorbani K; Cosic I
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):567-76. PubMed ID: 21571615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Securing the communication of medical information using local biometric authentication and commercial wireless links.
    Ivanov VI; Yu PL; Baras JS
    Health Informatics J; 2010 Sep; 16(3):211-23. PubMed ID: 20889851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secure and lightweight network admission and transmission protocol for body sensor networks.
    He D; Chen C; Chan S; Bu J; Zhang P
    IEEE J Biomed Health Inform; 2013 May; 17(3):664-74. PubMed ID: 24592466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks.
    Pirbhulal S; Zhang H; Mukhopadhyay SC; Li C; Wang Y; Li G; Wu W; Zhang YT
    Sensors (Basel); 2015 Jun; 15(7):15067-89. PubMed ID: 26131666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless body area network node localization using small-scale spatial information.
    Lo G; Gonzalez-Valenzuela S; Leung VC
    IEEE J Biomed Health Inform; 2013 May; 17(3):715-26. PubMed ID: 24592472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.