BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22049438)

  • 1. The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search.
    Monosov IE; Sheinberg DL; Thompson KG
    J Neurosci; 2011 Nov; 31(44):15956-61. PubMed ID: 22049438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontal eye field activity enhances object identification during covert visual search.
    Monosov IE; Thompson KG
    J Neurophysiol; 2009 Dec; 102(6):3656-72. PubMed ID: 19828723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copula regression analysis of simultaneously recorded frontal eye field and inferotemporal spiking activity during object-based working memory.
    Hu M; Clark KL; Gong X; Noudoost B; Li M; Moore T; Liang H
    J Neurosci; 2015 Jun; 35(23):8745-57. PubMed ID: 26063909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent spatial information in the FEF during object-based short-term memory does not contribute to task performance.
    Clark KL; Noudoost B; Moore T
    J Cogn Neurosci; 2014 Jun; 26(6):1292-9. PubMed ID: 24673408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search.
    Monosov IE; Sheinberg DL; Thompson KG
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):13105-10. PubMed ID: 20615946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Source for Feature-Based Attention in the Prefrontal Cortex.
    Bichot NP; Heard MT; DeGennaro EM; Desimone R
    Neuron; 2015 Nov; 88(4):832-44. PubMed ID: 26526392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent spatial information in the frontal eye field during object-based short-term memory.
    Clark KL; Noudoost B; Moore T
    J Neurosci; 2012 Aug; 32(32):10907-14. PubMed ID: 22875925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural basis of the set-size effect in frontal eye field: timing of attention during visual search.
    Cohen JY; Heitz RP; Woodman GF; Schall JD
    J Neurophysiol; 2009 Apr; 101(4):1699-704. PubMed ID: 19176607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of the monkey frontal eye field to covert visual attention.
    Wardak C; Ibos G; Duhamel JR; Olivier E
    J Neurosci; 2006 Apr; 26(16):4228-35. PubMed ID: 16624943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal basis of covert spatial attention in the frontal eye field.
    Thompson KG; Biscoe KL; Sato TR
    J Neurosci; 2005 Oct; 25(41):9479-87. PubMed ID: 16221858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing frontal eye field and superior colliculus contributions to covert spatial attention.
    Bollimunta A; Bogadhi AR; Krauzlis RJ
    Nat Commun; 2018 Sep; 9(1):3553. PubMed ID: 30177726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of experience on the representation of object-centered space in the macaque supplementary eye field.
    Moorman DE; Olson CR
    J Neurophysiol; 2007 Mar; 97(3):2159-73. PubMed ID: 17202234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position.
    DiCarlo JJ; Maunsell JH
    J Neurophysiol; 2003 Jun; 89(6):3264-78. PubMed ID: 12783959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades.
    Dias EC; Segraves MA
    J Neurophysiol; 1999 May; 81(5):2191-214. PubMed ID: 10322059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal activity representing visuospatial mnemonic processes associated with target selection in the monkey dorsolateral prefrontal cortex.
    Iba M; Sawaguchi T
    Neurosci Res; 2002 May; 43(1):9-22. PubMed ID: 12074837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time course of attentional modulation in the frontal eye field during curve tracing.
    Khayat PS; Pooresmaeili A; Roelfsema PR
    J Neurophysiol; 2009 Apr; 101(4):1813-22. PubMed ID: 19176609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of presaccadic activity in the frontal eye field by the superior colliculus.
    Berman RA; Joiner WM; Cavanaugh J; Wurtz RH
    J Neurophysiol; 2009 Jun; 101(6):2934-42. PubMed ID: 19321644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontotemporal coordination predicts working memory performance and its local neural signatures.
    Rezayat E; Dehaqani MA; Clark K; Bahmani Z; Moore T; Noudoost B
    Nat Commun; 2021 Feb; 12(1):1103. PubMed ID: 33597516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saliency and saccade encoding in the frontal eye field during natural scene search.
    Fernandes HL; Stevenson IH; Phillips AN; Segraves MA; Kording KP
    Cereb Cortex; 2014 Dec; 24(12):3232-45. PubMed ID: 23863686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.