BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22049551)

  • 1. Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability.
    Wang M; Xiong S; Wu X; Chu PK
    Small; 2011 Oct; 7(19):2801-7. PubMed ID: 22049551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes, containing water molecules.
    Bystrov VS; Coutinho J; Zelenovskiy PS; Nuraeva AS; Kopyl S; Filippov SV; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2020 Nov; 26(11):326. PubMed ID: 33140163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence of Diphenylalanine Peptide Nano/Microstructures: From Mechanisms to Applications.
    Gan Z; Xu H
    Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28902961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjustable photoluminescence of peptide nanotubes coatings.
    Amdursky N; Koren I; Gazit E; Rosenman G
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9282-6. PubMed ID: 22400337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Water Self-Diffusion in Diphenylalanine Peptide Nanotubes.
    Zelenovskiy PS; Domingues EM; Slabov V; Kopyl S; Ugolkov VL; Figueiredo FML; Kholkin AL
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27485-27492. PubMed ID: 32463652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue luminescence based on quantum confinement at peptide nanotubes.
    Amdursky N; Molotskii M; Aronov D; Adler-Abramovich L; Gazit E; Rosenman G
    Nano Lett; 2009 Sep; 9(9):3111-5. PubMed ID: 19736968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes.
    Bystrov VS; Zelenovskiy PS; Nuraeva AS; Kopyl S; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2019 Jun; 25(7):199. PubMed ID: 31240406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes.
    George J; Thomas KG
    J Am Chem Soc; 2010 Mar; 132(8):2502-3. PubMed ID: 20136136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency Raman scattering of bioinspired self-assembled diphenylalanine nanotubes/microtubes.
    Wu X; Xiong S; Wang M; Shen J; Chu PK
    Opt Express; 2012 Feb; 20(5):5119-26. PubMed ID: 22418317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diphenylalanine peptide nanotubes self-assembled on functionalized metal surfaces for potential application in drug-eluting stent.
    Zohrabi T; Habibi N; Zarrabi A; Fanaei M; Lee LY
    J Biomed Mater Res A; 2016 Sep; 104(9):2280-90. PubMed ID: 27119433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulation of Self-Assembly Processes of Diphenylalanine Peptide Nanotubes and Determination of Their Chirality.
    Bystrov V; Likhachev I; Filippov S; Paramonova E
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the Chloride Anions on the Formation of Self-Assembled Diphenylalanine Peptide Nanotubes.
    Dayarian S; Kopyl S; Bystrov V; Correia MR; Ivanov MS; Pelegova E; Kholkin A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1563-1570. PubMed ID: 29994474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modelling and computational studies of peptide diphenylalanine nanotubes, containing waters: structural and interactions analysis.
    Bystrov VS; Filippov SV
    J Mol Model; 2022 Mar; 28(4):81. PubMed ID: 35247081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis.
    Bystrov V; Coutinho J; Zelenovskiy P; Nuraeva A; Kopyl S; Zhulyabina O; Tverdislov V
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of water molecules on the electronic and structural properties of peptide nanotubes.
    Andrade-Filho T; Ferreira FF; Alves WA; Rocha AR
    Phys Chem Chem Phys; 2013 May; 15(20):7555-9. PubMed ID: 23588391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis.
    Kim JH; Lee M; Lee JS; Park CB
    Angew Chem Int Ed Engl; 2012 Jan; 51(2):517-20. PubMed ID: 21976303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective detection of neurotoxin by photoluminescent peptide nanotubes.
    Kim JH; Ryu J; Park CB
    Small; 2011 Mar; 7(6):718-22. PubMed ID: 21425454
    [No Abstract]   [Full Text] [Related]  

  • 20. Probing nonlinear optical coefficients in self-assembled peptide nanotubes.
    Khanra S; Ghosh K; Ferreira FF; Alves WA; Punzo F; Yu P; Guha S
    Phys Chem Chem Phys; 2017 Jan; 19(4):3084-3093. PubMed ID: 28079210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.