These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22049711)

  • 41. Calcium sulfide-organosilicon complex for sustained release of H
    Zhu F; Hu X; Kong L; Peng X
    J Hazard Mater; 2022 Jan; 421():126745. PubMed ID: 34364206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors.
    Hedrich S; Johnson DB
    Environ Sci Technol; 2014 Oct; 48(20):12206-12. PubMed ID: 25251612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide.
    Fang D; Zhang R; Liu X; Zhou L
    J Hazard Mater; 2012 Jun; 219-220():119-26. PubMed ID: 22503217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6.
    Gouider M; Feki M; Sayadi S
    J Hazard Mater; 2009 Oct; 170(2-3):962-8. PubMed ID: 19524365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A simple method for removing chelated copper from wastewaters: Ca(OH)(2)-based replacement-precipitation.
    Jiang S; Fu F; Qu J; Xiong Y
    Chemosphere; 2008 Oct; 73(5):785-90. PubMed ID: 18653210
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new approach to the remediation of heavy metal liquid wastes via off-gases produced by Klebsiella pneumoniae M426.
    Essa AM; Creamer NJ; Brown NL; Macaskie LE
    Biotechnol Bioeng; 2006 Nov; 95(4):574-83. PubMed ID: 16958139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphate recovery from greenhouse wastewater.
    Yi WG; Lo KV
    J Environ Sci Health B; 2003 Jul; 38(4):501-9. PubMed ID: 12856931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pilot test of pollution control and metal resource recovery for acid mine drainage.
    Yan B; Mai G; Chen T; Lei C; Xiao X
    Water Sci Technol; 2015; 72(12):2308-17. PubMed ID: 26676020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Boat pressure washing wastewater treatment with calcium oxide and/or ferric chloride.
    Oreščanin V; Kollar R; Nađ K; Mikelić IL; Mikulić N
    Arh Hig Rada Toksikol; 2012 Mar; 63(1):21-6. PubMed ID: 22450202
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies.
    Mokone TP; van Hille RP; Lewis AE
    Water Res; 2012 May; 46(7):2088-100. PubMed ID: 22336629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. UV light irradiation improves the aggregation and settling performance of metal sulfide particles in strongly acidic wastewater.
    Peng X; Xia Z; Kong L; Hu X; Wang X
    Water Res; 2019 Oct; 163():114860. PubMed ID: 31325704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction on the anaerobic biological activity inhibition caused by heavy metals and sulphates in effluents through chemical precipitation with soda and lime.
    Alves Lde C; Cammarota MC; De França FP
    Environ Technol; 2006 Dec; 27(12):1391-400. PubMed ID: 17285944
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and analysis of continuous-flow reactors for copper sulfide precipitation process by a computational method.
    Yang Z; Li B; Zeng W; Li K; Liu S; Hu H; Guo W
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34531-34551. PubMed ID: 31642020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissolution of D2EHPA in liquid-liquid extraction process: implication on metal removal and organic content of the treated water.
    Lee PC; Li CW; Chen JY; Li YS; Chen SS
    Water Res; 2011 Nov; 45(18):5953-8. PubMed ID: 21937070
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphorus recovery from human urine and anaerobically treated wastewater through pH adjustment and chemical precipitation.
    Kemacheevakul P; Polprasert C; Shimizu Y
    Environ Technol; 2011; 32(7-8):693-8. PubMed ID: 21879544
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different options for metal recovery after sludge decontamination at the Montreal Urban Community wastewater treatment plant.
    Meunier N; Blais JF; Lounès M; Tyagi RD; Sasseville JL
    Water Sci Technol; 2002; 46(10):33-41. PubMed ID: 12479450
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine.
    Ronteltap M; Maurer M; Gujer W
    Water Res; 2007 May; 41(9):1859-68. PubMed ID: 17368503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.