These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22050004)

  • 1. Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR.
    Falco C; Perez Caballero F; Babonneau F; Gervais C; Laurent G; Titirici MM; Baccile N
    Langmuir; 2011 Dec; 27(23):14460-71. PubMed ID: 22050004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrally edited 2D 13C-13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials.
    Johnson RL; Anderson JM; Shanks BH; Fang X; Hong M; Schmidt-Rohr K
    J Magn Reson; 2013 Sep; 234():112-24. PubMed ID: 23871898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate-derived hydrothermal carbons: a thorough characterization study.
    Yu L; Falco C; Weber J; White RJ; Howe JY; Titirici MM
    Langmuir; 2012 Aug; 28(33):12373-83. PubMed ID: 22853745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous carbohydrate-based materials via hard templating.
    Kubo S; Demir-Cakan R; Zhao L; White RJ; Titirici MM
    ChemSusChem; 2010 Feb; 3(2):188-94. PubMed ID: 19885902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors.
    Falco C; Sieben JM; Brun N; Sevilla M; van der Mauelen T; Morallón E; Cazorla-Amorós D; Titirici MM
    ChemSusChem; 2013 Feb; 6(2):374-82. PubMed ID: 23319452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renewable nitrogen-doped hydrothermal carbons derived from microalgae.
    Falco C; Sevilla M; White RJ; Rothe R; Titirici MM
    ChemSusChem; 2012 Sep; 5(9):1834-40. PubMed ID: 22544481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A density functional study of the 13C NMR chemical shifts in functionalized single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Autschbach J
    J Am Chem Soc; 2007 Apr; 129(14):4430-9. PubMed ID: 17371025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal carbonization of lignocellulosic biomass.
    Xiao LP; Shi ZJ; Xu F; Sun RC
    Bioresour Technol; 2012 Aug; 118():619-23. PubMed ID: 22698445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation.
    Garlapalli RK; Wirth B; Reza MT
    Bioresour Technol; 2016 Nov; 220():168-174. PubMed ID: 27567477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal carbonization of agricultural residues.
    Oliveira I; Blöhse D; Ramke HG
    Bioresour Technol; 2013 Aug; 142():138-46. PubMed ID: 23735795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides.
    Sevilla M; Fuertes AB
    Chemistry; 2009; 15(16):4195-203. PubMed ID: 19248078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres.
    Braghiroli FL; Fierro V; Izquierdo MT; Parmentier J; Pizzi A; Celzard A
    Bioresour Technol; 2014 Jan; 151():271-7. PubMed ID: 24246483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.
    Parshetti GK; Kent Hoekman S; Balasubramanian R
    Bioresour Technol; 2013 May; 135():683-9. PubMed ID: 23127830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization.
    Titirici MM; Antonietti M
    Chem Soc Rev; 2010 Jan; 39(1):103-16. PubMed ID: 20023841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydrolysis and carbonization reactions on hydrochar production.
    Fakkaew K; Koottatep T; Polprasert C
    Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational studies of poly(9,9-dialkylfluorene)s in solution using NMR spectroscopy and density functional theory calculations.
    Justino LL; Ramos ML; Abreu PE; Carvalho RA; Sobral AJ; Scherf U; Burrows HD
    J Phys Chem B; 2009 Sep; 113(35):11808-21. PubMed ID: 19663434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of a moleculartweezer host-guest system by a combination of quantum-chemical calculations and solid-state NMR experiments.
    Ochsenfeld C; Koziol F; Brown SP; Schaller T; Seelbach UP; Klärner FG
    Solid State Nucl Magn Reson; 2002; 22(2-3):128-53. PubMed ID: 12469808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal conversion of biomass to fuels and energetic materials.
    Kruse A; Funke A; Titirici MM
    Curr Opin Chem Biol; 2013 Jun; 17(3):515-21. PubMed ID: 23707262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-13 as a tool for the study of carbohydrate structures, conformations and interactions.
    Nunez HA; Walker TE; Fuentes R; O'Connor J; Serianni A; Barker R
    J Supramol Struct; 1977; 6(4):535-50. PubMed ID: 592822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide assisted hydrothermal carbonization of carbon hydrates.
    Krishnan D; Raidongia K; Shao J; Huang J
    ACS Nano; 2014 Jan; 8(1):449-57. PubMed ID: 24298909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.