BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22050765)

  • 1. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy.
    Malherbe J; Isaure MP; Séby F; Watson RP; Rodriguez-Gonzalez P; Stutzman PE; Davis CW; Maurizio C; Unceta N; Sieber JR; Long SE; Donard OF
    Environ Sci Technol; 2011 Dec; 45(24):10492-500. PubMed ID: 22050765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR).
    Elzinga EJ; Cirmo A
    J Hazard Mater; 2010 Nov; 183(1-3):145-54. PubMed ID: 20674158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications to EPA Method 3060A to Improve Extraction of Cr(VI) from Chromium Ore Processing Residue-Contaminated Soils.
    Mills CT; Bern CR; Wolf RE; Foster AL; Morrison JM; Benzel WM
    Environ Sci Technol; 2017 Oct; 51(19):11235-11243. PubMed ID: 28892376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation of chromium in soils near Sheba Leather Industry, Wukro Ethiopia.
    Gitet H; Subramanian PA; Minilu D; Kiros T; Hilawie M; Gebremariam G; Taye K
    Talanta; 2013 Nov; 116():626-9. PubMed ID: 24148454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil.
    Huang M; Ding G; Yan X; Rao P; Wang X; Meng X; Shi Q
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques.
    Papassiopi N; Kontoyianni A; Vaxevanidou K; Xenidis A
    Sci Total Environ; 2009 Jan; 407(2):925-36. PubMed ID: 18945478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels.
    Horowitz SB; Finley BL
    J Toxicol Environ Health; 1993 Dec; 40(4):585-99. PubMed ID: 8277520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved XANES speciation studies of chromium on soils during simulated contamination.
    Kappen P; Welter E; Beck PH; McNamara JM; Moroney KA; Roe GM; Read A; Pigram PJ
    Talanta; 2008 Jun; 75(5):1284-92. PubMed ID: 18585214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a European standard for the determination of hexavalent chromium in solid material.
    Tirez K; Scharf H; Calzolari D; Cleven R; Kisser M; Lück D
    J Environ Monit; 2007 Jul; 9(7):749-59. PubMed ID: 17607396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.
    Du J; Lu J; Wu Q; Jing C
    J Hazard Mater; 2012 May; 215-216():152-8. PubMed ID: 22417394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.
    Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG
    Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of sequential extraction procedures for soluble and insoluble hexavalent chromium compounds in workplace air samples.
    Ashley K; Applegate GT; Marcy AD; Drake PL; Pierce PA; Carabin N; Demange M
    J Environ Monit; 2009 Feb; 11(2):318-25. PubMed ID: 19212588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR).
    Wazne M; Jagupilla SC; Moon DH; Jagupilla SC; Christodoulatos C; Kim MG
    J Hazard Mater; 2007 May; 143(3):620-8. PubMed ID: 17276597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the human health risks posed by exposure to chromium-contaminated soils.
    Sheehan PJ; Meyer DM; Sauer MM; Paustenbach DJ
    J Toxicol Environ Health; 1991 Feb; 32(2):161-201. PubMed ID: 1995927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extractability of Cr(VI) from contaminated soil in synthetic sweat.
    Wainman T; Hazen RE; Lioy PJ
    J Expo Anal Environ Epidemiol; 1994; 4(2):171-81. PubMed ID: 7549472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil humic acids may favour the persistence of hexavalent chromium in soil.
    Leita L; Margon A; Pastrello A; Arcon I; Contin M; Mosetti D
    Environ Pollut; 2009 Jun; 157(6):1862-6. PubMed ID: 19231051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue.
    Chrysochoou M; Dermatas D
    J Hazard Mater; 2007 Mar; 141(2):370-7. PubMed ID: 16842911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of an electrothermal atomization atomic absorption spectrometry method for quantification of total chromium and chromium(VI) in wild mushrooms and underlying soils.
    Figueiredo E; Soares ME; Baptista P; Castro M; Bastos ML
    J Agric Food Chem; 2007 Aug; 55(17):7192-8. PubMed ID: 17661487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid leaching of Cr(VI) in soil with Na3PO4 in the determination of hexavalent chromium by electrothermal atomic absorption spectrometry.
    Mandiwana KL
    Talanta; 2008 Jan; 74(4):736-40. PubMed ID: 18371702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate.
    Jagupilla SC; Moon DH; Wazne M; Christodoulatos C; Kim MG
    J Hazard Mater; 2009 Aug; 168(1):121-8. PubMed ID: 19272700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.