These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22050822)

  • 1. Fungal adaptation to extremely high salt concentrations.
    Gostinčar C; Lenassi M; Gunde-Cimerman N; Plemenitaš A
    Adv Appl Microbiol; 2011; 77():71-96. PubMed ID: 22050822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of the glycerol-3-phosphate dehydrogenase Gpd1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga.
    Lenassi M; Zajc J; Gostinčar C; Gorjan A; Gunde-Cimerman N; Plemenitaš A
    Fungal Biol; 2011 Oct; 115(10):959-70. PubMed ID: 21944208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing and Responding to Hypersaline Conditions and the HOG Signal Transduction Pathway in Fungi Isolated from Hypersaline Environments:
    Plemenitaš A
    J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mycobiota of the salterns.
    Zajc J; Zalar P; Plemenitaš A; Gunde-Cimerman N
    Prog Mol Subcell Biol; 2012; 53():133-58. PubMed ID: 22222830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments.
    Kogej T; Ramos J; Plemenitas A; Gunde-Cimerman N
    Appl Environ Microbiol; 2005 Nov; 71(11):6600-5. PubMed ID: 16269687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halotolerant and halophilic fungi.
    Gunde-Cimerman N; Ramos J; Plemenitas A
    Mycol Res; 2009 Nov; 113(Pt 11):1231-41. PubMed ID: 19747974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment.
    Kejžar A; Gobec S; Plemenitaš A; Lenassi M
    Fungal Biol; 2013 May; 117(5):368-79. PubMed ID: 23719222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii.
    Lenassi M; Gostinčar C; Jackman S; Turk M; Sadowski I; Nislow C; Jones S; Birol I; Cimerman NG; Plemenitaš A
    PLoS One; 2013; 8(8):e71328. PubMed ID: 23977017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective.
    Plemenitaš A; Lenassi M; Konte T; Kejžar A; Zajc J; Gostinčar C; Gunde-Cimerman N
    Front Microbiol; 2014; 5():199. PubMed ID: 24860557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii.
    Vaupotic T; Plemenitas A
    BMC Genomics; 2007 Aug; 8():280. PubMed ID: 17705830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HwHog1 kinase activity is crucial for survival of Hortaea werneckii in extremely hyperosmolar environments.
    Kejžar A; Grötli M; Tamás MJ; Plemenitaš A; Lenassi M
    Fungal Genet Biol; 2015 Jan; 74():45-58. PubMed ID: 25483129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expressions of Delta 9-, Delta 12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent.
    Gostincar C; Turk M; Plemenitas A; Gunde-Cimerman N
    FEMS Yeast Res; 2009 Mar; 9(2):247-56. PubMed ID: 19220869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport Systems in Halophilic Fungi.
    Plemenitaš A; Konte T; Gostinčar C; Cimerman NG
    Adv Exp Med Biol; 2016; 892():307-325. PubMed ID: 26721280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungi in salterns.
    Chung D; Kim H; Choi HS
    J Microbiol; 2019 Sep; 57(9):717-724. PubMed ID: 31452042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial mediation of environmental osmolytes discrimination during osmoadaptation in the extremely halotolerant black yeast Hortaea werneckii.
    Vaupotic T; Veranic P; Jenoe P; Plemenitas A
    Fungal Genet Biol; 2008 Jun; 45(6):994-1007. PubMed ID: 18343697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel 3'-phosphoadenosine-5'-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts.
    Vaupotic T; Gunde-Cimerman N; Plemenitas A
    Fungal Genet Biol; 2007 Nov; 44(11):1109-22. PubMed ID: 17420146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The MAP kinase HwHog1 from the halophilic black yeast Hortaea werneckii: coping with stresses in solar salterns.
    Lenassi M; Vaupotic T; Gunde-Cimerman N; Plemenitas A
    Saline Syst; 2007 Mar; 3():3. PubMed ID: 17349032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance.
    Plemenitas A; Vaupotic T; Lenassi M; Kogej T; Gunde-Cimerman N
    Stud Mycol; 2008; 61():67-75. PubMed ID: 19287528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii.
    Petrovic U; Gunde-Cimerman N; Plemenitas A
    Mol Microbiol; 2002 Aug; 45(3):665-72. PubMed ID: 12139614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent.
    Zajc J; Liu Y; Dai W; Yang Z; Hu J; Gostinčar C; Gunde-Cimerman N
    BMC Genomics; 2013 Sep; 14():617. PubMed ID: 24034603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.