These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
591 related articles for article (PubMed ID: 22050837)
21. Enhanced denitrifying phosphorous removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source. Xu X; Liu G; Zhu L Bioresour Technol; 2011 Nov; 102(22):10340-5. PubMed ID: 21945662 [TBL] [Abstract][Full Text] [Related]
22. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules. Pijuan M; Werner U; Yuan Z Water Res; 2011 Oct; 45(16):5075-83. PubMed ID: 21803396 [TBL] [Abstract][Full Text] [Related]
23. Partial nitrification of sludge reject water by means of aerobic granulation. López-Palau S; Pericas A; Dosta J; Mata-Álvarez J Water Sci Technol; 2011; 64(9):1906-12. PubMed ID: 22020486 [TBL] [Abstract][Full Text] [Related]
24. Efficient COD removal and nitrification in an upflow microaerobic sludge blanket reactor for domestic wastewater. Zheng S; Cui C Biotechnol Lett; 2012 Mar; 34(3):471-4. PubMed ID: 22105554 [TBL] [Abstract][Full Text] [Related]
25. Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms. Zhou Y; Pijuan M; Yuan Z Water Res; 2008 Jun; 42(12):3207-17. PubMed ID: 18472126 [TBL] [Abstract][Full Text] [Related]
26. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Wunderlin P; Mohn J; Joss A; Emmenegger L; Siegrist H Water Res; 2012 Mar; 46(4):1027-37. PubMed ID: 22227243 [TBL] [Abstract][Full Text] [Related]
27. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry. González C; García PA; Muñoz R Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061 [TBL] [Abstract][Full Text] [Related]
28. Nitritation and denitritation of domestic wastewater using a continuous anaerobic-anoxic-aerobic (A(2)O) process at ambient temperatures. Zeng W; Li L; Yang Y; Wang S; Peng Y Bioresour Technol; 2010 Nov; 101(21):8074-82. PubMed ID: 20579871 [TBL] [Abstract][Full Text] [Related]
29. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite. Ji Z; Chen Y Environ Sci Technol; 2010 Dec; 44(23):8957-63. PubMed ID: 21053972 [TBL] [Abstract][Full Text] [Related]
30. Selection of denitrifying phosphorus accumulating organisms in activated sludge. Spagni A; Stante L; Bortone G Environ Technol; 2001 Dec; 22(12):1429-37. PubMed ID: 11873878 [TBL] [Abstract][Full Text] [Related]
31. The presence of ammonium facilitates nitrite reduction under PHB driven simultaneous nitrification and denitrification. Gibbs BM; Shephard LR; Third KA; Cord-Ruwisch R Water Sci Technol; 2004; 50(10):181-8. PubMed ID: 15656311 [TBL] [Abstract][Full Text] [Related]
32. Unraveling characteristics of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in an aerobic granular sequencing batch reactor. He Q; Zhang S; Zou Z; Zheng LA; Wang H Bioresour Technol; 2016 Nov; 220():651-655. PubMed ID: 27599624 [TBL] [Abstract][Full Text] [Related]
33. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs. Katsogiannis AN; Kornaros M; Lyberatos G Water Sci Technol; 2003; 47(11):53-9. PubMed ID: 12906271 [TBL] [Abstract][Full Text] [Related]
34. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes. Wantawin C; Juateea J; Noophan PL; Munakata-Marr J Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166 [TBL] [Abstract][Full Text] [Related]
35. A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor. De Clippeleir H; Vlaeminck SE; Carballa M; Verstraete W Bioresour Technol; 2009 Nov; 100(21):5010-5. PubMed ID: 19535244 [TBL] [Abstract][Full Text] [Related]
36. Biological nutrient and organic removal from meat packing wastewater with a unique sequence of suspended growth and fixed-film reactors. Lim SJ; Kim SH; Fox P Water Sci Technol; 2009; 60(12):3189-97. PubMed ID: 19955643 [TBL] [Abstract][Full Text] [Related]
37. Demonstration of enhanced nutrient removal at two full-scale SBR plants. Peters M; Newland M; Seviour T; Broom T; Bridle T Water Sci Technol; 2004; 50(10):115-20. PubMed ID: 15656303 [TBL] [Abstract][Full Text] [Related]
38. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion. Ge H; Batstone DJ; Keller J Water Res; 2013 Nov; 47(17):6546-57. PubMed ID: 24045213 [TBL] [Abstract][Full Text] [Related]
39. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal. Wu G; Rodgers M Water Sci Technol; 2010; 61(10):2433-41. PubMed ID: 20453315 [TBL] [Abstract][Full Text] [Related]
40. Wastewater nitrogen removal in Sbrs, applying a step-feed strategy: from lab-scale to pilot-plant operation. Puig S; Vives MT; Corominas L; Balaguer MD; Colprim J Water Sci Technol; 2004; 50(10):89-96. PubMed ID: 15656300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]