BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22050892)

  • 1. Insights into fruit function from the proteome of the hypanthium.
    Marondedze C; Thomas LA
    J Plant Physiol; 2012 Jan; 169(1):12-9. PubMed ID: 22050892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apple hypanthium firmness: new insights from comparative proteomics.
    Marondedze C; Thomas LA
    Appl Biochem Biotechnol; 2012 Sep; 168(2):306-26. PubMed ID: 22733236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.
    Buron-Moles G; Wisniewski M; Viñas I; Teixidó N; Usall J; Droby S; Torres R
    J Proteomics; 2015 Jan; 114():136-51. PubMed ID: 25464364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proteomic investigation of apple fruit during ripening and in response to ethylene treatment.
    Zheng Q; Song J; Campbell-Palmer L; Thompson K; Li L; Walker B; Cui Y; Li X
    J Proteomics; 2013 Nov; 93():276-94. PubMed ID: 23435059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics research on the effects of applying selenium to apple leaves on photosynthesis.
    Ning CJ; Ding N; Wu GL; Meng HJ; Wang YN; Wang QH
    Plant Physiol Biochem; 2013 Sep; 70():1-6. PubMed ID: 23770588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of the major soluble components in Annurca apple flesh.
    Guarino C; Arena S; De Simone L; D'Ambrosio C; Santoro S; Rocco M; Scaloni A; Marra M
    Mol Nutr Food Res; 2007 Feb; 51(2):255-62. PubMed ID: 17266180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of soluble carbohydrate distribution in apple fruit flesh utilizing MALDI-TOF MS imaging.
    Horikawa K; Hirama T; Shimura H; Jitsuyama Y; Suzuki T
    Plant Sci; 2019 Jan; 278():107-112. PubMed ID: 30471723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major proteome variations associated with cherry tomato pericarp development and ripening.
    Faurobert M; Mihr C; Bertin N; Pawlowski T; Negroni L; Sommerer N; Causse M
    Plant Physiol; 2007 Mar; 143(3):1327-46. PubMed ID: 17208958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic study of 'Moncada' mandarin buds from on- versus off-crop trees.
    Muñoz-Fambuena N; Mesejo C; Reig C; Agustí M; Tárraga S; Lisón P; Iglesias DJ; Primo-Millo E; González-Mas MC
    Plant Physiol Biochem; 2013 Dec; 73():41-55. PubMed ID: 24056126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of proteins associated with seasonal bud dormancy at four critical stages in Japanese apricot.
    Zhuang WB; Shi T; Gao ZH; Zhang Z; Zhang JY
    Plant Biol (Stuttg); 2013 Jan; 15(1):233-42. PubMed ID: 22672637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analysis of Vernalization Responsive Proteins in Winter Wheat Jing841.
    Feng Y; Kong B; Zhang J; Chen X; Yuan J; Tang X; Ma C
    Protein Pept Lett; 2018; 25(3):260-274. PubMed ID: 29345567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of peach fruit during ripening upon post-harvest heat combined with 1-MCP treatment.
    Jiang L; Zhang L; Shi Y; Lu Z; Yu Z
    J Proteomics; 2014 Feb; 98():31-43. PubMed ID: 24333156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of 'Zaosu' pear (Pyrus bretschneideri Rehd.) and its early-maturing bud sport.
    Liu X; Zhai R; Feng W; Zhang S; Wang Z; Qiu Z; Zhang J; Ma F; Xu L
    Plant Sci; 2014 Jul; 224():120-35. PubMed ID: 24908513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).
    Zhang YX; Yu D; Tian XL; Liu CY; Gai SP; Zheng GS
    Plant Biol (Stuttg); 2015 Jan; 17(1):114-22. PubMed ID: 25091021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic fingerprinting of apple fruit, juice, and cider via combinatorial peptide ligand libraries and MS analysis.
    Lerma-García MJ; Nicoletti M; Simó-Alfonso EF; Righetti PG; Fasoli E
    Electrophoresis; 2019 Jan; 40(2):266-271. PubMed ID: 30294796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering key proteins of oil palm (Elaeis guineensis Jacq.) fruit mesocarp development by proteomics and chemometrics.
    Hassan H; Amiruddin MD; Weckwerth W; Ramli US
    Electrophoresis; 2019 Jan; 40(2):254-265. PubMed ID: 30370930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of differentially expressed proteins of gamma-ray irradiated rat intestinal epithelial IEC-6 cells by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry.
    Bo Z; Yongping S; Fengchao W; Guoping A; Yongjiang W
    Proteomics; 2005 Feb; 5(2):426-32. PubMed ID: 15700242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant.
    Chen MX; Sun C; Zhang KL; Song YC; Tian Y; Chen X; Liu YG; Ye NH; Zhang J; Qu S; Zhu FY
    BMC Plant Biol; 2019 Oct; 19(1):445. PubMed ID: 31651235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential proteomic analysis during the vegetative phase change and the floral transition in Malus domestica.
    Zeng GJ; Li CM; Zhang XZ; Han ZH; Yang FQ; Gao Y; Chen DM; Zhao YB; Wang Y; Teng YL; Dong WX
    Dev Growth Differ; 2010 Sep; 52(7):635-44. PubMed ID: 20887564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Novel Proteins from Black Cumin Seed Meals Based on 2D Gel Electrophoresis and MALDI-TOF/TOF-MS Analysis.
    Çakir B; Gülseren İ
    Plant Foods Hum Nutr; 2019 Sep; 74(3):414-420. PubMed ID: 31278561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.