BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22051105)

  • 1. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines.
    Li SD; Tagami T; Ho YF; Yeang CH
    BMC Syst Biol; 2011 Nov; 5():186. PubMed ID: 22051105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.
    Sintupisut N; Liu PL; Yeang CH
    Nucleic Acids Res; 2013 Oct; 41(19):8803-21. PubMed ID: 23907387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated analysis of molecular aberrations in NCI-60 cell lines.
    Yeang CH
    BMC Bioinformatics; 2010 Oct; 11():495. PubMed ID: 20925909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.
    Kresse SH; Rydbeck H; Skårn M; Namløs HM; Barragan-Polania AH; Cleton-Jansen AM; Serra M; Liestøl K; Hogendoorn PC; Hovig E; Myklebost O; Meza-Zepeda LA
    PLoS One; 2012; 7(11):e48262. PubMed ID: 23144859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA expression profiles for the NCI-60 cancer cell panel.
    Blower PE; Verducci JS; Lin S; Zhou J; Chung JH; Dai Z; Liu CG; Reinhold W; Lorenzi PL; Kaldjian EP; Croce CM; Weinstein JN; Sadee W
    Mol Cancer Ther; 2007 May; 6(5):1483-91. PubMed ID: 17483436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying master regulators of cancer and their downstream targets by integrating genomic and epigenomic features.
    Gevaert O; Plevritis S
    Pac Symp Biocomput; 2013; ():123-34. PubMed ID: 23424118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Putative effectors for prognosis in lung adenocarcinoma are ethnic and gender specific.
    Woolston A; Sintupisut N; Lu TP; Lai LC; Tsai MH; Chuang EY; Yeang CH
    Oncotarget; 2015 Aug; 6(23):19483-99. PubMed ID: 26160836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pan-cancer multi-omics analysis and orthogonal experimental assessment of epigenetic driver genes.
    Halaburkova A; Cahais V; Novoloaca A; Araujo MGDS; Khoueiry R; Ghantous A; Herceg Z
    Genome Res; 2020 Oct; 30(10):1517-1532. PubMed ID: 32963031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies.
    Berg KCG; Eide PW; Eilertsen IA; Johannessen B; Bruun J; Danielsen SA; Bjørnslett M; Meza-Zepeda LA; Eknæs M; Lind GE; Myklebost O; Skotheim RI; Sveen A; Lothe RA
    Mol Cancer; 2017 Jul; 16(1):116. PubMed ID: 28683746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated epigenomic-transcriptomic landscape of lung cancer reveals novel methylation driver genes of diagnostic and therapeutic relevance.
    Sun X; Yi J; Yang J; Han Y; Qian X; Liu Y; Li J; Lu B; Zhang J; Pan X; Liu Y; Liang M; Chen E; Liu P; Lu Y
    Theranostics; 2021; 11(11):5346-5364. PubMed ID: 33859751
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic and genetic deregulation in cancer target distinct signaling pathway domains.
    Gao Y; Teschendorff AE
    Nucleic Acids Res; 2017 Jan; 45(2):583-596. PubMed ID: 27899617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
    Nickerson ML; Witte N; Im KM; Turan S; Owens C; Misner K; Tsang SX; Cai Z; Wu S; Dean M; Costello JC; Theodorescu D
    Oncogene; 2017 Jan; 36(1):35-46. PubMed ID: 27270441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.
    Riaz M; van Jaarsveld MT; Hollestelle A; Prager-van der Smissen WJ; Heine AA; Boersma AW; Liu J; Helmijr J; Ozturk B; Smid M; Wiemer EA; Foekens JA; Martens JW
    Breast Cancer Res; 2013 Apr; 15(2):R33. PubMed ID: 23601657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of druggable cancer driver genes amplified across TCGA datasets.
    Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H
    PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel candidate key drivers in the integrative network of genes, microRNAs, methylations, and copy number variations in squamous cell lung carcinoma.
    Huang T; Yang J; Cai YD
    Biomed Res Int; 2015; 2015():358125. PubMed ID: 25802847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular mechanisms involved in epigenetic alterations in cancer].
    Toyota M; Suzuki H; Nishizaka T; Sato A; Yamashita T
    Gan To Kagaku Ryoho; 2010 Sep; 37(9):1650-3. PubMed ID: 20841926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CERNA SEARCH METHOD IDENTIFIED A MET-ACTIVATED SUBGROUP AMONG EGFR DNA AMPLIFIED LUNG ADENOCARCINOMA PATIENTS.
    Kabat H; Tunkle L; Lee I
    Pac Symp Biocomput; 2017; 22():438-448. PubMed ID: 27896996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring causal genomic alterations in breast cancer using gene expression data.
    Tran LM; Zhang B; Zhang Z; Zhang C; Xie T; Lamb JR; Dai H; Schadt EE; Zhu J
    BMC Syst Biol; 2011 Aug; 5():121. PubMed ID: 21806811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.