These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. Gastaldi G; Asti A; Scaffino MF; Visai L; Saino E; Cometa AM; Benazzo F J Biomed Mater Res A; 2010 Sep; 94(3):790-9. PubMed ID: 20336739 [TBL] [Abstract][Full Text] [Related]
4. Trabecular titanium can induce in vitro osteogenic differentiation of human adipose derived stem cells without osteogenic factors. Benazzo F; Botta L; Scaffino MF; Caliogna L; Marullo M; Fusi S; Gastaldi G J Biomed Mater Res A; 2014 Jul; 102(7):2061-71. PubMed ID: 23894030 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Liu Q; Cen L; Yin S; Chen L; Liu G; Chang J; Cui L Biomaterials; 2008 Dec; 29(36):4792-9. PubMed ID: 18823660 [TBL] [Abstract][Full Text] [Related]
6. Effect of varied ionic calcium on human adipose-derived stem cell mineralization. McCullen SD; Zhan J; Onorato ML; Bernacki SH; Loboa EG Tissue Eng Part A; 2010 Jun; 16(6):1971-81. PubMed ID: 20088702 [TBL] [Abstract][Full Text] [Related]
7. The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Liu Q; Cen L; Zhou H; Yin S; Liu G; Liu W; Cao Y; Cui L Tissue Eng Part A; 2009 Nov; 15(11):3487-97. PubMed ID: 19438323 [TBL] [Abstract][Full Text] [Related]
8. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
9. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors. Maroni P; Brini AT; Arrigoni E; de Girolamo L; Niada S; Matteucci E; Bendinelli P; Desiderio MA Biochem Biophys Res Commun; 2012 Nov; 428(2):271-7. PubMed ID: 23085045 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. de Girolamo L; Sartori MF; Albisetti W; Brini AT J Tissue Eng Regen Med; 2007; 1(2):154-7. PubMed ID: 18038404 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of the osteogenic differentiation capacity of human bone marrow- and human adipose-derived stem cells under cyclic tensile stretch using quantitative analysis. Ye Y; Du Y; Guo F; Gong C; Yang K; Qin L Int J Mol Med; 2012 Dec; 30(6):1327-34. PubMed ID: 22961098 [TBL] [Abstract][Full Text] [Related]
12. Growth factor gene expression profiles of bone morphogenetic protein-2-treated human adipose stem cells seeded on calcium phosphate scaffolds in vitro. Overman JR; Helder MN; ten Bruggenkate CM; Schulten EA; Klein-Nulend J; Bakker AD Biochimie; 2013 Dec; 95(12):2304-13. PubMed ID: 24028822 [TBL] [Abstract][Full Text] [Related]
13. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. Kim YJ; Bae SW; Yu SS; Bae YC; Jung JS J Bone Miner Res; 2009 May; 24(5):816-25. PubMed ID: 19063684 [TBL] [Abstract][Full Text] [Related]
14. Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous three-dimensional scaffold. Lee JH; Rhie JW; Oh DY; Ahn ST Biochem Biophys Res Commun; 2008 Jun; 370(3):456-60. PubMed ID: 18395007 [TBL] [Abstract][Full Text] [Related]
15. Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. de Girolamo L; Lopa S; Arrigoni E; Sartori MF; Baruffaldi Preis FW; Brini AT Cytotherapy; 2009; 11(6):793-803. PubMed ID: 19878065 [TBL] [Abstract][Full Text] [Related]
16. Effects of titanium surface roughness on mesenchymal stem cell commitment and differentiation signaling. Balloni S; Calvi EM; Damiani F; Bistoni G; Calvitti M; Locci P; Becchetti E; Marinucci L Int J Oral Maxillofac Implants; 2009; 24(4):627-35. PubMed ID: 19885402 [TBL] [Abstract][Full Text] [Related]
17. In vitro osteogenesis of human adipose-derived stem cells by coculture with human umbilical vein endothelial cells. Wang J; Ye Y; Tian H; Yang S; Jin X; Tong W; Zhang Y Biochem Biophys Res Commun; 2011 Aug; 412(1):143-9. PubMed ID: 21806974 [TBL] [Abstract][Full Text] [Related]
18. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Arrigoni E; Lopa S; de Girolamo L; Stanco D; Brini AT Cell Tissue Res; 2009 Dec; 338(3):401-11. PubMed ID: 19882172 [TBL] [Abstract][Full Text] [Related]
19. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells. Cai K; Lai M; Yang W; Hu R; Xin R; Liu Q; Sung KL Acta Biomater; 2010 Jun; 6(6):2314-21. PubMed ID: 19963080 [TBL] [Abstract][Full Text] [Related]
20. TiO2 -enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation. Mozumder MS; Zhu J; Perinpanayagam H Biomed Mater; 2011 Jun; 6(3):035009. PubMed ID: 21555842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]