These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22051375)

  • 41. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.
    Wu JC; Gardner DP; Ozer S; Gutell RR; Ren P
    J Mol Biol; 2009 Aug; 391(4):769-83. PubMed ID: 19540243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sparse RNA folding revisited: space-efficient minimum free energy structure prediction.
    Will S; Jabbari H
    Algorithms Mol Biol; 2016; 11():7. PubMed ID: 27110275
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oritatami: A Computational Model for Molecular Co-Transcriptional Folding.
    Geary C; Meunier PÉ; Schabanel N; Seki S
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067813
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RNAdualPF: software to compute the dual partition function with sample applications in molecular evolution theory.
    Garcia-Martin JA; Bayegan AH; Dotu I; Clote P
    BMC Bioinformatics; 2016 Oct; 17(1):424. PubMed ID: 27756204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxfold: kinetic folding of RNA using stochastic context-free grammars and evolutionary information.
    Anderson JW; Haas PA; Mathieson LA; Volynkin V; Lyngsø R; Tataru P; Hein J
    Bioinformatics; 2013 Mar; 29(6):704-10. PubMed ID: 23396120
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy-directed RNA structure prediction.
    Hofacker IL
    Methods Mol Biol; 2014; 1097():71-84. PubMed ID: 24639155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Challenges and approaches to predicting RNA with multiple functional structures.
    Schroeder SJ
    RNA; 2018 Dec; 24(12):1615-1624. PubMed ID: 30143552
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computing folding pathways between RNA secondary structures.
    Dotu I; Lorenz WA; Van Hentenryck P; Clote P
    Nucleic Acids Res; 2010 Mar; 38(5):1711-22. PubMed ID: 20044352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Practicality and time complexity of a sparsified RNA folding algorithm.
    Dimitrieva S; Bucher P
    J Bioinform Comput Biol; 2012 Apr; 10(2):1241007. PubMed ID: 22809342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Base-pair ambiguity and the kinetics of RNA folding.
    Zhou G; Loper J; Geman S
    BMC Bioinformatics; 2019 Dec; 20(1):666. PubMed ID: 31830902
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Paradigms for computational nucleic acid design.
    Dirks RM; Lin M; Winfree E; Pierce NA
    Nucleic Acids Res; 2004; 32(4):1392-403. PubMed ID: 14990744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of RNAs: comparing programs for inverse RNA folding.
    Churkin A; Retwitzer MD; Reinharz V; Ponty Y; Waldispühl J; Barash D
    Brief Bioinform; 2018 Mar; 19(2):350-358. PubMed ID: 28049135
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting folding pathways between RNA conformational structures guided by RNA stacks.
    Li Y; Zhang S
    BMC Bioinformatics; 2012 Mar; 13 Suppl 3(Suppl 3):S5. PubMed ID: 22536903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints.
    Gaspin C; Westhof E
    J Mol Biol; 1995 Nov; 254(2):163-74. PubMed ID: 7490740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of the free energy in a stochastic RNA secondary structure model.
    Nebel ME; Scheid A
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1468-82. PubMed ID: 21116040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Maximum expected accuracy structural neighbors of an RNA secondary structure.
    Clote P; Lou F; Lorenz WA
    BMC Bioinformatics; 2012 Apr; 13 Suppl 5(Suppl 5):S6. PubMed ID: 22537010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GTfold: enabling parallel RNA secondary structure prediction on multi-core desktops.
    Swenson MS; Anderson J; Ash A; Gaurav P; Sükösd Z; Bader DA; Harvey SC; Heitsch CE
    BMC Res Notes; 2012 Jul; 5():341. PubMed ID: 22747589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Consensus folding of unaligned RNA sequences revisited.
    Bafna V; Tang H; Zhang S
    J Comput Biol; 2006 Mar; 13(2):283-95. PubMed ID: 16597240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pairwise visual comparison of small RNA secondary structures with base pair probabilities.
    Léger S; Costa MBW; Tulpan D
    BMC Bioinformatics; 2019 May; 20(1):293. PubMed ID: 31142266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.