These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 22051680)

  • 21. Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex.
    Mizuseki K; Buzsaki G
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120530. PubMed ID: 24366139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics.
    Navratilova Z; Giocomo LM; Fellous JM; Hasselmo ME; McNaughton BL
    Hippocampus; 2012 Apr; 22(4):772-89. PubMed ID: 21484936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An oscillatory interference model of grid cell firing.
    Burgess N; Barry C; O'Keefe J
    Hippocampus; 2007; 17(9):801-12. PubMed ID: 17598147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular mechanisms of spatial navigation in the medial entorhinal cortex.
    Schmidt-Hieber C; Häusser M
    Nat Neurosci; 2013 Mar; 16(3):325-31. PubMed ID: 23396102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A unified view of theta-phase coding in the entorhinal-hippocampal system.
    Yamaguchi Y; Sato N; Wagatsuma H; Wu Z; Molter C; Aota Y
    Curr Opin Neurobiol; 2007 Apr; 17(2):197-204. PubMed ID: 17379502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane potential dynamics of grid cells.
    Domnisoru C; Kinkhabwala AA; Tank DW
    Nature; 2013 Mar; 495(7440):199-204. PubMed ID: 23395984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theta Oscillations Gate the Transmission of Reliable Sequences in the Medial Entorhinal Cortex.
    Neru A; Assisi C
    eNeuro; 2021; 8(3):. PubMed ID: 33820802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spike Time Synchrony in the Absence of Continuous Oscillations.
    Trimper JB; Colgin LL
    Neuron; 2018 Nov; 100(3):527-529. PubMed ID: 30408441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory.
    Jacobs J
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20130304. PubMed ID: 24366145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The entorhinal grid map is discretized.
    Stensola H; Stensola T; Solstad T; Frøland K; Moser MB; Moser EI
    Nature; 2012 Dec; 492(7427):72-8. PubMed ID: 23222610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.
    Tocker G; Barak O; Derdikman D
    Hippocampus; 2015 Dec; 25(12):1599-613. PubMed ID: 26105192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gamma oscillations in the entorhinal cortex of the freely behaving rat.
    Chrobak JJ; Buzsáki G
    J Neurosci; 1998 Jan; 18(1):388-98. PubMed ID: 9412515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks.
    Solanka L; van Rossum MC; Nolan MF
    Elife; 2015 Jul; 4():. PubMed ID: 26146940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex.
    Fernandez FR; White JA
    J Neurosci; 2008 Apr; 28(14):3790-803. PubMed ID: 18385337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase coding by grid cells in unconstrained environments: two-dimensional phase precession.
    Climer JR; Newman EL; Hasselmo ME
    Eur J Neurosci; 2013 Aug; 38(4):2526-41. PubMed ID: 23718553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.
    Chen Q; Luo F; Yue F; Xia J; Xiao Q; Liao X; Jiang J; Zhang J; Hu B; Gao D; He C; Hu Z
    Cereb Cortex; 2018 Jul; 28(7):2439-2457. PubMed ID: 28591796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase precession in the human hippocampus and entorhinal cortex.
    Qasim SE; Fried I; Jacobs J
    Cell; 2021 Jun; 184(12):3242-3255.e10. PubMed ID: 33979655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Locally ordered representation of 3D space in the entorhinal cortex.
    Ginosar G; Aljadeff J; Burak Y; Sompolinsky H; Las L; Ulanovsky N
    Nature; 2021 Aug; 596(7872):404-409. PubMed ID: 34381211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex.
    Tang Q; Ebbesen CL; Sanguinetti-Scheck JI; Preston-Ferrer P; Gundlfinger A; Winterer J; Beed P; Ray S; Naumann R; Schmitz D; Brecht M; Burgalossi A
    J Neurosci; 2015 Sep; 35(36):12346-54. PubMed ID: 26354904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology.
    Sutton NM; Gutiérrez-Guzmán BE; Dannenberg H; Ascoli GA
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.