These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 22051898)
1. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers. Part 1: time domain analysis. Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH J Clin Monit Comput; 2011 Dec; 25(6):377-85. PubMed ID: 22051898 [TBL] [Abstract][Full Text] [Related]
2. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers part 2: frequency domain analysis. Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH J Clin Monit Comput; 2011 Dec; 25(6):387-96. PubMed ID: 22057245 [TBL] [Abstract][Full Text] [Related]
3. A novel approach using time-frequency analysis of pulse-oximeter data to detect progressive hypovolemia in spontaneously breathing healthy subjects. Selvaraj N; Shelley KH; Silverman DG; Stachenfeld N; Galante N; Florian JP; Mendelson Y; Chon K IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21518656 [TBL] [Abstract][Full Text] [Related]
4. Using the ear photoplethysmographic waveform as an early indicator of central hypovolemia in healthy volunteers utilizing LBNP induced hypovolemia model. Eid AM; Elgamal M; Gonzalez-Fiol A; Shelley KH; Wu HT; Alian AA Physiol Meas; 2023 Jul; 44(5):. PubMed ID: 37116503 [No Abstract] [Full Text] [Related]
5. Impact of lower body negative pressure induced hypovolemia on peripheral venous pressure waveform parameters in healthy volunteers. Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH Physiol Meas; 2014 Jul; 35(7):1509-20. PubMed ID: 24901895 [TBL] [Abstract][Full Text] [Related]
6. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood. Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068 [TBL] [Abstract][Full Text] [Related]
7. Early detection of spontaneous blood loss using amplitude modulation of Photoplethysmogram. Selvaraj N; Scully CG; Shelley KH; Silverman DG; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5499-502. PubMed ID: 22255583 [TBL] [Abstract][Full Text] [Related]
8. Respiratory variations in the photoplethysmographic waveform: acute hypovolaemia during spontaneous breathing is not detected. Nilsson L; Goscinski T; Lindenberger M; Länne T; Johansson A Physiol Meas; 2010 Jul; 31(7):953-62. PubMed ID: 20530847 [TBL] [Abstract][Full Text] [Related]
9. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients. Alian AA; Atteya G; Gaal D; Golembeski T; Smith BG; Dai F; Silverman DG; Shelley K Anesth Analg; 2016 Aug; 123(2):346-56. PubMed ID: 27284998 [TBL] [Abstract][Full Text] [Related]
10. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers. van Genderen ME; Bartels SA; Lima A; Bezemer R; Ince C; Bakker J; van Bommel J Anesth Analg; 2013 Feb; 116(2):351-6. PubMed ID: 23302972 [TBL] [Abstract][Full Text] [Related]
11. Physiologic validation of the Compensatory Reserve Metric obtained from pulse oximetry: A step toward advanced medical monitoring on the battlefield. Roden RT; Webb KL; Pruter WW; Gorman EK; Holmes DR; Haider CR; Joyner MJ; Curry TB; Wiggins CC; Convertino VA J Trauma Acute Care Surg; 2024 Aug; 97(2S Suppl 1):S98-S104. PubMed ID: 38745348 [TBL] [Abstract][Full Text] [Related]
12. Respiratory variations in pulse pressure and photoplethysmographic waveform amplitude during positive expiratory pressure and continuous positive airway pressure in a model of progressive hypovolemia. Hoff IE; Hisdal J; Landsverk SA; Røislien J; Kirkebøen KA; Høiseth LØ PLoS One; 2019; 14(9):e0223071. PubMed ID: 31560715 [TBL] [Abstract][Full Text] [Related]
13. Comparison of cardiac output monitoring methods for detecting central hypovolemia due to lower body negative pressure. Reisner AT; Xu D; Ryan KL; Convertino VA; Mukkamala R Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():955-8. PubMed ID: 18002116 [TBL] [Abstract][Full Text] [Related]
14. Amplitude and phase measurements from harmonic analysis may lead to new physiologic insights: lower body negative pressure photoplethysmographic waveforms as an example. Alian A; Shelley K; Wu HT J Clin Monit Comput; 2023 Feb; 37(1):127-137. PubMed ID: 35896756 [TBL] [Abstract][Full Text] [Related]
15. Tracking central hypovolemia with ecg in humans: cautions for the use of heart period variability in patient monitoring. Ryan KL; Rickards CA; Ludwig DA; Convertino VA Shock; 2010 Jun; 33(6):583-9. PubMed ID: 19997052 [TBL] [Abstract][Full Text] [Related]
16. Time-varying methods for characterizing nonstationary dynamics of physiological systems. Selvaraj N; Lee J; Chon KH Methods Inf Med; 2010; 49(5):435-42. PubMed ID: 20871941 [TBL] [Abstract][Full Text] [Related]
17. Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy. Lee J; Kim JG; Mahon S; Tromberg BJ; Ryan KL; Convertino VA; Rickards CA; Osann K; Brenner M J Biomed Opt; 2008; 13(6):064027. PubMed ID: 19123673 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Pulse Arrival Times during Lower Body Negative Pressure Test for the Non-Invasive Detection of Hypovolemia. Tigges T; Feldheiser A; Pielmus A; Klum M; Wiegank L; Orglmeister R Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3770-3774. PubMed ID: 31946695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]