These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22052087)

  • 1. Transport of nanoparticles through the placental barrier.
    Kulvietis V; Zalgeviciene V; Didziapetriene J; Rotomskis R
    Tohoku J Exp Med; 2011 Dec; 225(4):225-34. PubMed ID: 22052087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and Biological Effects of Nanoparticles in the Reproductive System.
    Liu Y; Li H; Xiao K
    Curr Drug Metab; 2016; 17(5):478-96. PubMed ID: 26728263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models.
    Aengenheister L; Dietrich D; Sadeghpour A; Manser P; Diener L; Wichser A; Karst U; Wick P; Buerki-Thurnherr T
    J Nanobiotechnology; 2018 Oct; 16(1):79. PubMed ID: 30309365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an ex Vivo Human Placental Perfusion Model.
    Grafmueller S; Manser P; Diener L; Diener PA; Maeder-Althaus X; Maurizi L; Jochum W; Krug HF; Buerki-Thurnherr T; von Mandach U; Wick P
    Environ Health Perspect; 2015 Dec; 123(12):1280-6. PubMed ID: 25956008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST.
    Correia Carreira S; Walker L; Paul K; Saunders M
    Nanotoxicology; 2015 May; 9 Suppl 1():66-78. PubMed ID: 23927440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat.
    Semmler-Behnke M; Lipka J; Wenk A; Hirn S; Schäffler M; Tian F; Schmid G; Oberdörster G; Kreyling WG
    Part Fibre Toxicol; 2014 Sep; 11():33. PubMed ID: 25928666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on nanoparticles in human perfused placenta: State of the art and perspectives.
    Aengenheister L; Favaro RR; Morales-Prieto DM; Furer LA; Gruber M; Wadsack C; Markert UR; Buerki-Thurnherr T
    Placenta; 2021 Jan; 104():199-207. PubMed ID: 33418345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barrier capacity of human placenta for nanosized materials.
    Wick P; Malek A; Manser P; Meili D; Maeder-Althaus X; Diener L; Diener PA; Zisch A; Krug HF; von Mandach U
    Environ Health Perspect; 2010 Mar; 118(3):432-6. PubMed ID: 20064770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticulate drug delivery in pregnancy: placental passage and fetal exposure.
    Menezes V; Malek A; Keelan JA
    Curr Pharm Biotechnol; 2011 May; 12(5):731-42. PubMed ID: 21342124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplacental transport of nanomaterials.
    Saunders M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(6):671-84. PubMed ID: 20049824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles.
    Kenesei K; Murali K; Czéh Á; Piella J; Puntes V; Madarász E
    J Nanobiotechnology; 2016 Jul; 14(1):55. PubMed ID: 27388915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles.
    Voigt N; Henrich-Noack P; Kockentiedt S; Hintz W; Tomas J; Sabel BA
    Eur J Pharm Biopharm; 2014 May; 87(1):19-29. PubMed ID: 24607790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Functionalized Nanoparticles as Efficient Tools in Targeted Therapy of Pregnancy Complications.
    Zhang B; Liang R; Zheng M; Cai L; Fan X
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy.
    Figueroa-Espada CG; Hofbauer S; Mitchell MJ; Riley RS
    Adv Drug Deliv Rev; 2020; 160():244-261. PubMed ID: 32956719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle transport across the placental barrier: pushing the field forward!
    Muoth C; Aengenheister L; Kucki M; Wick P; Buerki-Thurnherr T
    Nanomedicine (Lond); 2016 Apr; 11(8):941-57. PubMed ID: 26979802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion.
    Juch H; Nikitina L; Reimann S; Gauster M; Dohr G; Obermayer-Pietsch B; Hoch D; Kornmueller K; Haag R
    Nanotoxicology; 2018 Mar; 12(2):90-103. PubMed ID: 29334310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications.
    Pereira KV; Giacomeli R; Gomes de Gomes M; Haas SE
    Placenta; 2020 Oct; 100():75-80. PubMed ID: 32862059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Penetration of pegylated gold nanoparticles through rat placental barrier.
    Tsyganova NA; Khairullin RM; Terentyuk GS; Khlebtsov BN; Bogatyrev VA; Dykman LA; Erykov SN; Khlebtsov NG
    Bull Exp Biol Med; 2014 Jul; 157(3):383-5. PubMed ID: 25065320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier.
    Yin F; Zhu Y; Zhang M; Yu H; Chen W; Qin J
    Toxicol In Vitro; 2019 Feb; 54():105-113. PubMed ID: 30248392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.