These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 22052298)

  • 1. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature.
    Zahmakıran M; Philippot K; Özkar S; Chaudret B
    Dalton Trans; 2012 Jan; 41(2):590-8. PubMed ID: 22052298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst.
    Caliskan S; Zahmakiran M; Durap F; Özkar S
    Dalton Trans; 2012 Apr; 41(16):4976-84. PubMed ID: 22410969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Ozkar S
    Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.
    Zahmakiran M; Ayvalı T; Philippot K
    Langmuir; 2012 Mar; 28(11):4908-14. PubMed ID: 22356554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aminopropyltriethoxysilane stabilized ruthenium(0) nanoclusters as an isolable and reusable heterogeneous catalyst for the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Tristany M; Philippot K; Fajerwerg K; Ozkar S; Chaudret B
    Chem Commun (Camb); 2010 May; 46(17):2938-40. PubMed ID: 20386829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green dehydrogenation of dimethylamine borane catalyzed by cheaply copper(0) nanocatalysts without any stabilizer at nearly room temperature.
    Özdemir A; Duman S
    Turk J Chem; 2021; 45(6):1739-1751. PubMed ID: 38144575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane.
    Akbayrak S; Ozkar S
    Dalton Trans; 2014 Jan; 43(4):1797-805. PubMed ID: 24247216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.
    Akbayrak S; Ozkar S
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6302-10. PubMed ID: 23113804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel highly active and reusable carbon based platinum-ruthenium nanocatalyst for dimethylamine-borane dehydrogenation in water at room conditions.
    Karatas Y; Acidereli H; Gulcan M; Sen F
    Sci Rep; 2020 Apr; 10(1):7149. PubMed ID: 32346088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2018 Mar; 513():287-294. PubMed ID: 29156236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot synthesis of colloidally robust rhodium(0) nanoparticles and their catalytic activity in the dehydrogenation of ammonia-borane for chemical hydrogen storage.
    Ayvalı T; Zahmakıran M; Özkar S
    Dalton Trans; 2011 Apr; 40(14):3584-91. PubMed ID: 21373677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature.
    Günbatar S; Aygun A; Karataş Y; Gülcan M; Şen F
    J Colloid Interface Sci; 2018 Nov; 530():321-327. PubMed ID: 29982024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Layer Deposition of Ruthenium Nanoparticles on Electrospun Carbon Nanofibers: A Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane.
    Khalily MA; Yurderi M; Haider A; Bulut A; Patil B; Zahmakiran M; Uyar T
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26162-26169. PubMed ID: 29989394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic methanolysis of hydrazine borane: a new and efficient hydrogen generation system under mild conditions.
    Karahan S; Zahmakıran M; Özkar S
    Dalton Trans; 2012 Apr; 41(16):4912-8. PubMed ID: 22451008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex situ synthesis and characterization of a polymer-carbon nanotube-based hybrid nanocatalyst with one of the highest catalytic activities and stabilities for the hydrolytic dehydrogenation of hydrazine-borane at room temperature conditions.
    Demirkan B; Kuyuldar E; Karataş Y; Gülcan M; Sen F
    J Colloid Interface Sci; 2019 Sep; 552():432-438. PubMed ID: 31152963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature.
    Durap F; Caliskan S; Özkar S; Karakas K; Zahmakiran M
    Materials (Basel); 2015 Jul; 8(7):4226-4238. PubMed ID: 28793435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.
    Yao Q; Lu ZH; Yang K; Chen X; Zhu M
    Sci Rep; 2015 Oct; 5():15186. PubMed ID: 26471355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Dalton Trans; 2016 Jul; 45(27):10969-78. PubMed ID: 27302302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.