These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 22052349)

  • 21. Prions of yeast as epigenetic phenomena: high protein "copy number" inducing protein "silencing".
    Wickner RB; Edskes HK; Roberts BT; Pierce M; Baxa U
    Adv Genet; 2002; 46():485-525. PubMed ID: 11931236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast Prions Compared to Functional Prions and Amyloids.
    Wickner RB; Edskes HK; Son M; Bezsonov EE; DeWilde M; Ducatez M
    J Mol Biol; 2018 Oct; 430(20):3707-3719. PubMed ID: 29698650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells.
    Masison DC; Wickner RB
    Science; 1995 Oct; 270(5233):93-5. PubMed ID: 7569955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding the yeast prion world: Active prion conversion of non-glutamine/asparagine-rich Mod5 for cell survival.
    Suzuki G; Tanaka M
    Prion; 2013; 7(2):109-13. PubMed ID: 23117914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae.
    Bousset L; Belrhali H; Janin J; Melki R; Morera S
    Structure; 2001 Jan; 9(1):39-46. PubMed ID: 11342133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prion amyloid structure explains templating: how proteins can be genes.
    Wickner RB; Shewmaker F; Edskes H; Kryndushkin D; Nemecek J; McGlinchey R; Bateman D; Winchester CL
    FEMS Yeast Res; 2010 Dec; 10(8):980-91. PubMed ID: 20726897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion.
    DePace AH; Santoso A; Hillner P; Weissman JS
    Cell; 1998 Jun; 93(7):1241-52. PubMed ID: 9657156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prion-forming ability of Ure2 of yeasts is not evolutionarily conserved.
    Edskes HK; Engel A; McCann LM; Brachmann A; Tsai HF; Wickner RB
    Genetics; 2011 May; 188(1):81-90. PubMed ID: 21368275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions.
    Parham SN; Resende CG; Tuite MF
    EMBO J; 2001 May; 20(9):2111-9. PubMed ID: 11331577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen/deuterium exchange mass spectrometric analysis of conformational changes accompanying the assembly of the yeast prion Ure2p into protein fibrils.
    Redeker V; Halgand F; Le Caer JP; Bousset L; Laprévote O; Melki R
    J Mol Biol; 2007 Jun; 369(4):1113-25. PubMed ID: 17482207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Innate immunity to prions: anti-prion systems turn a tsunami of prions into a slow drip.
    Wickner RB; Edskes HK; Son M; Wu S; Niznikiewicz M
    Curr Genet; 2021 Dec; 67(6):833-847. PubMed ID: 34319422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [URE3] and [PSI] are prions of yeast and evidence for new fungal prions.
    Masison DC; Edskes HK; Maddelein ML; Taylor KL; Wickner RB
    Curr Issues Mol Biol; 2000 Apr; 2(2):51-9. PubMed ID: 11471564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth.
    Watzky MA; Morris AM; Ross ED; Finke RG
    Biochemistry; 2008 Oct; 47(40):10790-800. PubMed ID: 18785757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Structure and functional similarity of yeast Sup35p and Ure2p proteins to mammalian prions].
    Kushnirov VV; Ter-Avanesian MD; Smirnov VN
    Mol Biol (Mosk); 1995; 29(4):750-5. PubMed ID: 7476941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role for the proteasome in the turnover of Sup35p and in [PSI(+) ] prion propagation.
    Kabani M; Redeker V; Melki R
    Mol Microbiol; 2014 May; 92(3):507-28. PubMed ID: 24589377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p.
    Thual C; Bousset L; Komar AA; Walter S; Buchner J; Cullin C; Melki R
    Biochemistry; 2001 Feb; 40(6):1764-73. PubMed ID: 11327838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alcohol oxidase (AOX1) from Pichia pastoris is a novel inhibitor of prion propagation and a potential ATPase.
    Zhang H; Loovers HM; Xu LQ; Wang M; Rowling PJ; Itzhaki LS; Gong W; Zhou JM; Jones GW; Perrett S
    Mol Microbiol; 2009 Feb; 71(3):702-16. PubMed ID: 19040632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch.
    Fei L; Perrett S
    J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two prion variants of Sup35p have in-register parallel beta-sheet structures, independent of hydration.
    Shewmaker F; Kryndushkin D; Chen B; Tycko R; Wickner RB
    Biochemistry; 2009 Jun; 48(23):5074-82. PubMed ID: 19408895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and assembly properties of the N-terminal domain of the prion Ure2p in isolation and in its natural context.
    Bousset L; Bonnefoy J; Sourigues Y; Wien F; Melki R
    PLoS One; 2010 Mar; 5(3):e9760. PubMed ID: 20339590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.