BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2205239)

  • 1. Characterization and inhibition of the retroviral HIV-proteinase.
    von der Helm K; Seelmeir S; Junker U
    Biol Chem Hoppe Seyler; 1990 May; 371 Suppl():277-81. PubMed ID: 2205239
    [No Abstract]   [Full Text] [Related]  

  • 2. A structural model for the retroviral proteases.
    Pearl LH; Taylor WR
    Nature; 1987 Sep 24-30; 329(6137):351-4. PubMed ID: 3306411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor.
    Katoh I; Yasunaga T; Ikawa Y; Yoshinaka Y
    Nature; 1987 Oct 15-21; 329(6140):654-6. PubMed ID: 2821409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1.
    Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM
    Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsite preferences of retroviral proteinases.
    Dunn BM; Gustchina A; Wlodawer A; Kay J
    Methods Enzymol; 1994; 241():254-78. PubMed ID: 7854181
    [No Abstract]   [Full Text] [Related]  

  • 6. Recombinant HIV1 protease secreted by Saccharomyces cerevisiae correctly processes myristylated gag polyprotein.
    Pichuantes S; Babé LM; Barr PJ; Craik CS
    Proteins; 1989; 6(3):324-37. PubMed ID: 2695931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of inhibitor binding in HIV-1 protease and in non-viral aspartic proteases: the role of the flap.
    Gustchina A; Weber IT
    FEBS Lett; 1990 Aug; 269(1):269-72. PubMed ID: 2201571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of retroviral proteases: an analysis of viral and nonviral protein substrates.
    Tomasselli AG; Heinrikson RL
    Methods Enzymol; 1994; 241():279-301. PubMed ID: 7854182
    [No Abstract]   [Full Text] [Related]  

  • 9. A simple Escherichia coli system for monitoring HIV protease activity: analysis of two temperature-sensitive protease mutants.
    Rockenbach SK; Olsen MK; Tomich CS
    AIDS Res Hum Retroviruses; 1990 Apr; 6(4):543-52. PubMed ID: 2187504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray structures of retroviral proteases and their inhibitor-bound complexes.
    Ringe D
    Methods Enzymol; 1994; 241():157-77. PubMed ID: 7854176
    [No Abstract]   [Full Text] [Related]  

  • 11. Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors.
    Friedler A; Blumenzweig I; Baraz L; Steinitz M; Kotler M; Gilon C
    J Mol Biol; 1999 Mar; 287(1):93-101. PubMed ID: 10074409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease?
    Towler EM; Gulnik SV; Bhat TN; Xie D; Gustschina E; Sumpter TR; Robertson N; Jones C; Sauter M; Mueller-Lantzsch N; Debouck C; Erickson JW
    Biochemistry; 1998 Dec; 37(49):17137-44. PubMed ID: 9860826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro inhibition of HIV-1 proteinase by cerulenin.
    Moelling K; Schulze T; Knoop MT; Kay J; Jupp R; Nicolaou G; Pearl LH
    FEBS Lett; 1990 Feb; 261(2):373-7. PubMed ID: 1690152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors.
    Savarino A; Cauda R; Cassone A
    J Infect Dis; 2005 Apr; 191(8):1381-2; author reply 1382-3. PubMed ID: 15776390
    [No Abstract]   [Full Text] [Related]  

  • 15. The structure and function of the aspartic proteinases.
    Davies DR
    Annu Rev Biophys Biophys Chem; 1990; 19():189-215. PubMed ID: 2194475
    [No Abstract]   [Full Text] [Related]  

  • 16. Crystal structure of a retroviral protease proves relationship to aspartic protease family.
    Miller M; Jaskólski M; Rao JK; Leis J; Wlodawer A
    Nature; 1989 Feb; 337(6207):576-9. PubMed ID: 2536902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retroviral proteases: structure, function and inhibition from a non-anticipated viral enzyme to the target of a most promising HIV therapy.
    von der Helm K
    Biol Chem; 1996 Dec; 377(12):765-74. PubMed ID: 8997487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionarily conserved functional mechanics across pepsin-like and retroviral aspartic proteases.
    Cascella M; Micheletti C; Rothlisberger U; Carloni P
    J Am Chem Soc; 2005 Mar; 127(11):3734-42. PubMed ID: 15771507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two new pepsin proteases of microbial origin.
    Pugsley AP
    Microbiol Sci; 1988 Jun; 5(6):190-1. PubMed ID: 3079238
    [No Abstract]   [Full Text] [Related]  

  • 20. A fluorometric assay for HIV-protease activity using high-performance liquid chromatography.
    Tamburini PP; Dreyer RN; Hansen J; Letsinger J; Elting J; Gore-Willse A; Dally R; Hanko R; Osterman D; Kamarck ME
    Anal Biochem; 1990 May; 186(2):363-8. PubMed ID: 2194400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.