These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2205239)

  • 21. Alternative native flap conformation revealed by 2.3 A resolution structure of SIV proteinase.
    Wilderspin AF; Sugrue RJ
    J Mol Biol; 1994 May; 239(1):97-103. PubMed ID: 8196050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ddi1, a eukaryotic protein with the retroviral protease fold.
    Sirkis R; Gerst JE; Fass D
    J Mol Biol; 2006 Dec; 364(3):376-87. PubMed ID: 17010377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromophoric peptide substrates for the spectrophotometric assay of HIV-1 protease.
    Tomaszek TA; Magaard VW; Bryan HG; Moore ML; Meek TD
    Biochem Biophys Res Commun; 1990 Apr; 168(1):274-80. PubMed ID: 2183799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrates and inhibitors of human T-cell leukemia virus type I protease.
    Ding YS; Rich DH; Ikeda RA
    Biochemistry; 1998 Dec; 37(50):17514-8. PubMed ID: 9860866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A.
    Seelmeier S; Schmidt H; Turk V; von der Helm K
    Proc Natl Acad Sci U S A; 1988 Sep; 85(18):6612-6. PubMed ID: 3045820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli.
    Strickler JE; Gorniak J; Dayton B; Meek T; Moore M; Magaard V; Malinowski J; Debouck C
    Proteins; 1989; 6(2):139-54. PubMed ID: 2695927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of a salt bridge between Asp 488 and Lys 465 in HIV-1 reverse transcriptase alters its proteolytic processing and polymerase activity.
    Goobar-Larsson L; Bäckbro K; Unge T; Bhikhabhai R; Vrang L; Zhang H; Orvell C; Strandberg B; Oberg B
    Virology; 1993 Oct; 196(2):731-8. PubMed ID: 7690504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and function of retroviral proteases.
    Fitzgerald PM; Springer JP
    Annu Rev Biophys Biophys Chem; 1991; 20():299-320. PubMed ID: 1651087
    [No Abstract]   [Full Text] [Related]  

  • 29. Identification, purification, and cell culture assays of retroviral proteases.
    von der Helm K; Seelmeier S; Kisselev A; Nitschko H
    Methods Enzymol; 1994; 241():89-104. PubMed ID: 7854194
    [No Abstract]   [Full Text] [Related]  

  • 30. The 80's loop (residues 78 to 85) is important for the differential activity of retroviral proteases.
    Stebbins J; Towler EM; Tennant MG; Deckman IC; Debouck C
    J Mol Biol; 1997 Apr; 267(3):467-75. PubMed ID: 9126830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and functional analogies between fibronectin and retroviral proteinases.
    Keil-Dlouha V
    Biol Chem Hoppe Seyler; 1990 May; 371 Suppl():283-7. PubMed ID: 2169255
    [No Abstract]   [Full Text] [Related]  

  • 32. Modulation of the affinity of aspartic proteases by the mutated residues in active site models.
    Goldblum A
    FEBS Lett; 1990 Feb; 261(2):241-4. PubMed ID: 2107098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of human immunodeficiency virus protease cleavage sites in proteins.
    Chou KC
    Anal Biochem; 1996 Jan; 233(1):1-14. PubMed ID: 8789141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease.
    Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS
    Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative properties of feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteinases prepared by total chemical synthesis.
    Schnölzer M; Rackwitz HR; Gustchina A; Laco GS; Wlodawer A; Elder JH; Kent SB
    Virology; 1996 Oct; 224(1):268-75. PubMed ID: 8862421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation.
    Davis DA; Brown CA; Newcomb FM; Boja ES; Fales HM; Kaufman J; Stahl SJ; Wingfield P; Yarchoan R
    J Virol; 2003 Mar; 77(5):3319-25. PubMed ID: 12584357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamics and proton uptake for pepstatin binding to retroviral and eukaryotic aspartic proteases.
    Xie D; Gulnik S; Collins L; Gustchina E; Bhat TN; Erickson JW
    Adv Exp Med Biol; 1998; 436():381-6. PubMed ID: 9561245
    [No Abstract]   [Full Text] [Related]  

  • 39. Synthetic approaches to continuous assays of retroviral proteases.
    Krafft GA; Wang GT
    Methods Enzymol; 1994; 241():70-86. PubMed ID: 7854193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breaking the shackles of the genetic code: engineering retroviral proteases through total chemical synthesis.
    Kent SB; Baca M; Elder J; Miller M; Milton R; Milton S; Rao JK; Schnölzer M
    Adv Exp Med Biol; 1995; 362():425-38. PubMed ID: 8540353
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.