BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22052667)

  • 1. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens.
    Sha R; Jiang L; Meng Q; Zhang G; Song Z
    J Basic Microbiol; 2012 Aug; 52(4):458-66. PubMed ID: 22052667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity.
    Rodrigues AI; Gudiña EJ; Teixeira JA; Rodrigues LR
    Sci Rep; 2017 Oct; 7(1):12907. PubMed ID: 29018256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids.
    Zhang GL; Wu YT; Qian XP; Meng Q
    J Zhejiang Univ Sci B; 2005 Aug; 6(8):725-30. PubMed ID: 16052704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T
    J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production of rhamnolipids: opportunities, challenges and strategies.
    Chong H; Li Q
    Microb Cell Fact; 2017 Aug; 16(1):137. PubMed ID: 28779757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process.
    Zhu L; Yang X; Xue C; Chen Y; Qu L; Lu W
    Bioresour Technol; 2012 Aug; 117():208-13. PubMed ID: 22613897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent.
    Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B
    Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K; Marsudi S; Unno H
    Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R.
    Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S
    Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems.
    Müller MM; Hörmann B; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of rhamnolipid biosurfactants by methylene blue complexation.
    Pinzon NM; Ju LK
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):975-81. PubMed ID: 19214498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.
    Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR
    Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentative production of rhamnolipid and purification by adsorption chromatography.
    Jadhav J; Dutta S; Kale S; Pratap A
    Prep Biochem Biotechnol; 2018 Mar; 48(3):234-241. PubMed ID: 29313452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine.
    Varnier AL; Sanchez L; Vatsa P; Boudesocque L; Garcia-Brugger A; Rabenoelina F; Sorokin A; Renault JH; Kauffmann S; Pugin A; Clement C; Baillieul F; Dorey S
    Plant Cell Environ; 2009 Feb; 32(2):178-193. PubMed ID: 19021887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.
    Zhang H; Xiang H; Zhang G; Cao X; Meng Q
    J Hazard Mater; 2009 Aug; 167(1-3):217-23. PubMed ID: 19185998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum.
    Goswami D; Borah SN; Lahkar J; Handique PJ; Deka S
    J Basic Microbiol; 2015 Nov; 55(11):1265-74. PubMed ID: 26173581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous rhamnolipid production using denitrifying Pseudomonas aeruginosa cells in hollow-fiber bioreactor.
    Pinzon NM; Cook AG; Ju LK
    Biotechnol Prog; 2013; 29(2):352-8. PubMed ID: 23359613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20.
    Abdel-Mawgoud AM; Aboulwafa MM; Hassouna NA
    Appl Biochem Biotechnol; 2009 May; 157(2):329-45. PubMed ID: 18584127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.