These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22052667)

  • 21. Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production.
    Müller MM; Hausmann R
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):251-64. PubMed ID: 21667084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria.
    Hošková M; Schreiberová O; Ježdík R; Chudoba J; Masák J; Sigler K; Rezanka T
    Bioresour Technol; 2013 Feb; 130():510-6. PubMed ID: 23313768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the structural composition and surface properties of rhamnolipid mixtures produced by Pseudomonas aeruginosa UFPEDA 614 in different cultivation periods.
    de Santana-Filho AP; Camilios-Neto D; de Souza LM; Sassaki GL; Mitchell DA; Krieger N
    Appl Biochem Biotechnol; 2015 Jan; 175(2):988-95. PubMed ID: 25351631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emulsifying Properties of Rhamnolipids and Their In Vitro Antifungal Activity against Plant Pathogenic Fungi.
    Li D; Tao W; Yu D; Li S
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste.
    Nitschke M; Costa SG; Contiero J
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2066-74. PubMed ID: 19649781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by Pseudomonas aeruginosa ATCC 10145.
    Chayabutra C; Ju LK
    Biotechnol Prog; 2001; 17(3):419-23. PubMed ID: 11386860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promoting pellet growth of Trichoderma reesei Rut C30 by surfactants for easy separation and enhanced cellulase production.
    Callow NV; Ju LK
    Enzyme Microb Technol; 2012 May; 50(6-7):311-7. PubMed ID: 22500898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH; Xu MY; Sun W; Sun GP
    Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils.
    Gong Z; Peng Y; Wang Q
    Biotechnol Lett; 2015 Oct; 37(10):2033-8. PubMed ID: 26087946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antifungal activity of rhamnolipids against dimorphic fungi.
    Sha R; Meng Q
    J Gen Appl Microbiol; 2016 Nov; 62(5):233-239. PubMed ID: 27666589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass.
    Sodagari M; Wang H; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhamnolipids--next generation surfactants?
    Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R
    J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens.
    Elshikh M; Funston S; Chebbi A; Ahmed S; Marchant R; Banat IM
    N Biotechnol; 2017 May; 36():26-36. PubMed ID: 28065676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide.
    Pinzon NM; Ju LK
    Biotechnol Lett; 2009 Oct; 31(10):1583-8. PubMed ID: 19547929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhamnolipid biosurfactant against Fusarium sacchari--the causal organism of pokkah boeng disease of sugarcane.
    Goswami D; Handique PJ; Deka S
    J Basic Microbiol; 2014 Jun; 54(6):548-57. PubMed ID: 23687052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures.
    Lépine F; Déziel E; Milot S; Villemur R
    J Mass Spectrom; 2002 Jan; 37(1):41-6. PubMed ID: 11813309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of rhamnolipids by Pseudomonas aeruginosa is inhibited by H2S but resumes in a co-culture with P. stutzeri: applications for microbial enhanced oil recovery.
    Zhao F; Ma F; Shi R; Zhang J; Han S; Zhang Y
    Biotechnol Lett; 2015 Sep; 37(9):1803-8. PubMed ID: 25994582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J
    World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.
    Chen SY; Wei YH; Chang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):67-74. PubMed ID: 17457541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.