BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 22052716)

  • 1. Musculoskeletal morphology and regionalization within the dorsal and anal fins of bluegill sunfish (Lepomis macrochirus).
    Chadwell BA; Ashley-Ross MA
    J Morphol; 2012 Apr; 273(4):405-22. PubMed ID: 22052716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional morphology of the fin rays of teleost fishes.
    Flammang BE; Alben S; Madden PG; Lauder GV
    J Morphol; 2013 Sep; 274(9):1044-59. PubMed ID: 23720195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    Zoology (Jena); 2016 Oct; 119(5):414-420. PubMed ID: 27291816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering.
    Standen EM; Lauder GV
    J Exp Biol; 2005 Jul; 208(Pt 14):2753-63. PubMed ID: 16000544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Sep; 204(Pt 17):2943-58. PubMed ID: 11551984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming.
    Tytell ED
    J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement.
    Chadwell BA; Standen EM; Lauder GV; Ashley-Ross MA
    J Exp Biol; 2012 Aug; 215(Pt 16):2869-80. PubMed ID: 22837461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). II: Fin-ray curvature.
    Chadwell BA; Standen EM; Lauder GV; Ashley-Ross MA
    J Exp Biol; 2012 Aug; 215(Pt 16):2881-90. PubMed ID: 22837462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.
    Tytell ED; Standen EM; Lauder GV
    J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speed-dependent intrinsic caudal fin muscle recruitment during steady swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    J Exp Biol; 2008 Feb; 211(Pt 4):587-98. PubMed ID: 18245636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance.
    Esposito CJ; Tangorra JL; Flammang BE; Lauder GV
    J Exp Biol; 2012 Jan; 215(Pt 1):56-67. PubMed ID: 22162853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish.
    Lauder GV; Madden PG; Mittal R; Dong H; Bozkurttas M
    Bioinspir Biomim; 2006 Dec; 1(4):S25-34. PubMed ID: 17671315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (Lepomis macrochirus).
    Williams R; Hale ME
    J Exp Biol; 2015 Nov; 218(Pt 21):3435-47. PubMed ID: 26347560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.
    Drucker EG; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 16):2379-93. PubMed ID: 10903153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    J Exp Biol; 2009 Jan; 212(Pt 2):277-86. PubMed ID: 19112147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis).
    Standen EM; Lauder GV
    J Exp Biol; 2007 Jan; 210(Pt 2):325-39. PubMed ID: 17210968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin.
    Tangorra JL; Lauder GV; Hunter IW; Mittal R; Madden PG; Bozkurttas M
    J Exp Biol; 2010 Dec; 213(Pt 23):4043-54. PubMed ID: 21075946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus.
    Tytell ED; Lauder GV
    J Exp Biol; 2008 Nov; 211(Pt 21):3359-69. PubMed ID: 18931309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional role of caudal and anal/dorsal fins during the C-start of a bluegill sunfish.
    Borazjani I
    J Exp Biol; 2013 May; 216(Pt 9):1658-69. PubMed ID: 23307797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.