BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22052869)

  • 1. Cerebral circulation during mild +Gz hypergravity by short-arm human centrifuge.
    Iwasaki K; Ogawa Y; Aoki K; Yanagida R
    J Appl Physiol (1985); 2012 Jan; 112(2):266-71. PubMed ID: 22052869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in cerebral oxygen saturation and cerebral blood flow velocity under mild +Gz hypergravity.
    Konishi T; Kurazumi T; Kato T; Takko C; Ogawa Y; Iwasaki KI
    J Appl Physiol (1985); 2019 Jul; 127(1):190-197. PubMed ID: 31169473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of acute exposure to hypergravity (GX vs. GZ) on dynamic cerebral autoregulation.
    Serrador JM; Wood SJ; Picot PA; Stein F; Kassam MS; Bondar RL; Rupert AH; Schlegel TT
    J Appl Physiol (1985); 2001 Nov; 91(5):1986-94. PubMed ID: 11641334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between widespread changes in gravity and cerebral blood flow.
    Ogawa Y; Yanagida R; Ueda K; Aoki K; Iwasaki K
    Environ Health Prev Med; 2016 Jul; 21(4):186-92. PubMed ID: 26860114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15% O2 hypoxia.
    Nishimura N; Iwasaki K; Ogawa Y; Aoki K
    J Appl Physiol (1985); 2010 May; 108(5):1154-61. PubMed ID: 20224002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
    Mitsis GD; Zhang R; Levine BD; Marmarelis VZ
    J Appl Physiol (1985); 2006 Jul; 101(1):354-66. PubMed ID: 16514006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose-Effect Relationship Between Mild Levels of Hypergravity and Autonomic Circulatory Regulation.
    Ueda K; Ogawa Y; Yanagida R; Aoki K; Iwasaki K
    Aerosp Med Hum Perform; 2015 Jun; 86(6):535-40. PubMed ID: 26099125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute exposure to normobaric mild hypoxia alters dynamic relationships between blood pressure and cerebral blood flow at very low frequency.
    Iwasaki K; Ogawa Y; Shibata S; Aoki K
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):776-84. PubMed ID: 16926845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral blood flow velocity and cranial fluid volume decrease during +Gz acceleration.
    Kawai Y; Puma SC; Hargens AR; Murthy G; Warkander D; Lundgren CE
    J Gravit Physiol; 1997 Oct; 4(3):31-4. PubMed ID: 11541866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of mild central hypovolemia with furosemide administration vs. lower body suction on dynamic cerebral autoregulation.
    Ogawa Y; Aoki K; Kato J; Iwasaki K
    J Appl Physiol (1985); 2013 Jan; 114(2):211-6. PubMed ID: 23195631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-Dependent Changes in Cerebral Blood Flow and Arterial Pressure During Mild +G
    Konishi T; Kurazumi T; Kato T; Takko C; Ogawa Y; Iwasaki KI
    Aerosp Med Hum Perform; 2018 Sep; 89(9):787-791. PubMed ID: 30126510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of sevoflurane on dynamic cerebral blood flow autoregulation assessed by spectral and transfer function analysis.
    Ogawa Y; Iwasaki K; Shibata S; Kato J; Ogawa S; Oi Y
    Anesth Analg; 2006 Feb; 102(2):552-9. PubMed ID: 16428560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span.
    Xing CY; Tarumi T; Meijers RL; Turner M; Repshas J; Xiong L; Ding K; Vongpatanasin W; Yuan LJ; Zhang R
    Hypertension; 2017 Apr; 69(4):712-720. PubMed ID: 28193707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained mild hypergravity reduces spontaneous cardiac baroreflex sensitivity.
    Yanagida R; Ogawa Y; Ueda K; Aoki K; Iwasaki K
    Auton Neurosci; 2014 Oct; 185():123-8. PubMed ID: 25156804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method.
    Ogawa Y; Iwasaki K; Aoki K; Kojima W; Kato J; Ogawa S
    Anesthesiology; 2008 Oct; 109(4):642-50. PubMed ID: 18813043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension.
    Brassard P; Kim YS; van Lieshout J; Secher NH; Rosenmeier JB
    Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2.
    Ainslie PN; Celi L; McGrattan K; Peebles K; Ogoh S
    Brain Res; 2008 Sep; 1230():115-24. PubMed ID: 18680730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brief exposure to -2 Gz reduces cerebral blood flow velocity during subsequent +2 Gz acceleration.
    Tran CC; Ossard G; Etienne X; Serra A; Berthelot M; Jouanin JC; Guézennec CY
    J Gravit Physiol; 2004 Jul; 11(2):P81-2. PubMed ID: 16235424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic neural control of dynamic cerebral autoregulation in humans.
    Zhang R; Zuckerman JH; Iwasaki K; Wilson TE; Crandall CG; Levine BD
    Circulation; 2002 Oct; 106(14):1814-20. PubMed ID: 12356635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.