BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22053070)

  • 1. Determinants of microvascular network topologies in implanted neovasculatures.
    Chang CC; Krishnan L; Nunes SS; Church KH; Edgar LT; Boland ED; Weiss JA; Williams SK; Hoying JB
    Arterioscler Thromb Vasc Biol; 2012 Jan; 32(1):5-14. PubMed ID: 22053070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of microvascular networks: role of stromal interactions directing angiogenic growth.
    Hoying JB; Utzinger U; Weiss JA
    Microcirculation; 2014 May; 21(4):278-89. PubMed ID: 24447042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis.
    Edgar LT; Underwood CJ; Guilkey JE; Hoying JB; Weiss JA
    PLoS One; 2014; 9(1):e85178. PubMed ID: 24465500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants.
    Nunes SS; Krishnan L; Gerard CS; Dale JR; Maddie MA; Benton RL; Hoying JB
    Microcirculation; 2010 Oct; 17(7):557-67. PubMed ID: 21040121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microvascular repair: post-angiogenesis vascular dynamics.
    LeBlanc AJ; Krishnan L; Sullivan CJ; Williams SK; Hoying JB
    Microcirculation; 2012 Nov; 19(8):676-95. PubMed ID: 22734666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making microvascular networks work: angiogenesis, remodeling, and pruning.
    Pries AR; Secomb TW
    Physiology (Bethesda); 2014 Nov; 29(6):446-55. PubMed ID: 25362638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical interaction of angiogenic microvessels with the extracellular matrix.
    Edgar LT; Hoying JB; Utzinger U; Underwood CJ; Krishnan L; Baggett BK; Maas SA; Guilkey JE; Weiss JA
    J Biomech Eng; 2014 Feb; 136(2):021001. PubMed ID: 24441831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis.
    Underwood CJ; Edgar LT; Hoying JB; Weiss JA
    Am J Physiol Heart Circ Physiol; 2014 Jul; 307(2):H152-64. PubMed ID: 24816262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels.
    Hoying JB; Boswell CA; Williams SK
    In Vitro Cell Dev Biol Anim; 1996; 32(7):409-19. PubMed ID: 8856341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid perfusion and network remodeling in a microvascular construct after implantation.
    Shepherd BR; Chen HY; Smith CM; Gruionu G; Williams SK; Hoying JB
    Arterioscler Thromb Vasc Biol; 2004 May; 24(5):898-904. PubMed ID: 14988090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale time series microscopy of neovessel growth during angiogenesis.
    Utzinger U; Baggett B; Weiss JA; Hoying JB; Edgar LT
    Angiogenesis; 2015 Jul; 18(3):219-32. PubMed ID: 25795217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of angiogenesis in three dimensions: Application to cerebral cortex.
    Alberding JP; Secomb TW
    PLoS Comput Biol; 2021 Jun; 17(6):e1009164. PubMed ID: 34170925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro.
    Edgar LT; Maas SA; Guilkey JE; Weiss JA
    Biomech Model Mechanobiol; 2015 Aug; 14(4):767-82. PubMed ID: 25429840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenesis in a microvascular construct for transplantation depends on the method of chamber circulation.
    Chang CC; Nunes SS; Sibole SC; Krishnan L; Williams SK; Weiss JA; Hoying JB
    Tissue Eng Part A; 2010 Mar; 16(3):795-805. PubMed ID: 19778185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging is associated with impaired angiogenesis, but normal microvascular network structure, in the rat mesentery.
    Sweat RS; Sloas DC; Stewart SA; Czarny-Ratajczak M; Baddoo M; Eastwood JR; Suarez-Martinez AD; Azimi MS; Burks HE; Chedister LO; Myers L; Murfee WL
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H275-H284. PubMed ID: 27864233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of mechanical boundary conditions on orientation of angiogenic microvessels.
    Krishnan L; Underwood CJ; Maas S; Ellis BJ; Kode TC; Hoying JB; Weiss JA
    Cardiovasc Res; 2008 May; 78(2):324-32. PubMed ID: 18310100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal characteristics of the microvascular network: A useful index to assess vascularization level of porous silk fibroin biomaterial.
    Zhan K; Bai L; Wu Q; Lei D; Wang G
    J Biomed Mater Res A; 2017 Aug; 105(8):2276-2290. PubMed ID: 28445607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based algorithms for microvessel classification.
    Smith AF; Secomb TW; Pries AR; Smith NP; Shipley RJ
    Microcirculation; 2015 Feb; 22(2):99-108. PubMed ID: 25403335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal distribution of neurovascular alignment in remodeling adult rat mesentery microvascular networks.
    Stapor PC; Murfee WL
    J Vasc Res; 2012; 49(4):299-308. PubMed ID: 22538935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating the microvasculature and its microenvironment.
    Krishnan L; Chang CC; Nunes SS; Williams SK; Weiss JA; Hoying JB
    Crit Rev Biomed Eng; 2013; 41(2):91-123. PubMed ID: 24580565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.