These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 22053078)
1. Detecting genome-wide epistases based on the clustering of relatively frequent items. Xie M; Li J; Jiang T Bioinformatics; 2012 Jan; 28(1):5-12. PubMed ID: 22053078 [TBL] [Abstract][Full Text] [Related]
2. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering. Guo X; Meng Y; Yu N; Pan Y BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145 [TBL] [Abstract][Full Text] [Related]
3. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. Leem S; Jeong HH; Lee J; Wee K; Sohn KA Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733 [TBL] [Abstract][Full Text] [Related]
4. A Markov blanket-based method for detecting causal SNPs in GWAS. Han B; Park M; Chen XW BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652 [TBL] [Abstract][Full Text] [Related]
5. Detecting epistatic effects in association studies at a genomic level based on an ensemble approach. Li J; Horstman B; Chen Y Bioinformatics; 2011 Jul; 27(13):i222-9. PubMed ID: 21685074 [TBL] [Abstract][Full Text] [Related]
6. Self-Adjusting Ant Colony Optimization Based on Information Entropy for Detecting Epistatic Interactions. Guan B; Zhao Y Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30717303 [TBL] [Abstract][Full Text] [Related]
7. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies. Yang CH; Chuang LY; Lin YD Bioinformatics; 2017 Aug; 33(15):2354-2362. PubMed ID: 28379338 [TBL] [Abstract][Full Text] [Related]
8. High-throughput analysis of epistasis in genome-wide association studies with BiForce. Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535 [TBL] [Abstract][Full Text] [Related]
9. EpiMC: Detecting Epistatic Interactions Using Multiple Clusterings. Wang J; Zhang H; Ren W; Guo M; Yu G IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):243-254. PubMed ID: 33989157 [TBL] [Abstract][Full Text] [Related]
10. CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions. Shang J; Sun Y; Liu JX; Xia J; Zhang J; Zheng CH BMC Bioinformatics; 2016 May; 17(1):214. PubMed ID: 27184783 [TBL] [Abstract][Full Text] [Related]
11. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses. Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607 [TBL] [Abstract][Full Text] [Related]
12. Predictive rule inference for epistatic interaction detection in genome-wide association studies. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365 [TBL] [Abstract][Full Text] [Related]
13. ClusterMI: Detecting High-Order SNP Interactions Based on Clustering and Mutual Information. Cao X; Yu G; Liu J; Jia L; Wang J Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30072632 [TBL] [Abstract][Full Text] [Related]
14. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
15. Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism. Woo HJ; Yu C; Kumar K; Gold B; Reifman J BMC Genomics; 2016 Aug; 17(1):695. PubMed ID: 27576376 [TBL] [Abstract][Full Text] [Related]
16. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks. Han B; Chen XW; Talebizadeh Z; Xu H BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790 [TBL] [Abstract][Full Text] [Related]
17. A random forest approach to the detection of epistatic interactions in case-control studies. Jiang R; Tang W; Wu X; Fu W BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S65. PubMed ID: 19208169 [TBL] [Abstract][Full Text] [Related]
18. A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis. Gayán J; González-Pérez A; Bermudo F; Sáez ME; Royo JL; Quintas A; Galan JJ; Morón FJ; Ramirez-Lorca R; Real LM; Ruiz A BMC Genomics; 2008 Jul; 9():360. PubMed ID: 18667089 [TBL] [Abstract][Full Text] [Related]
19. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference. Guo X; Zhang J; Cai Z; Du DZ; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006 [TBL] [Abstract][Full Text] [Related]
20. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach. Guo B; Wu B Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]