These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22053086)

  • 21. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE
    J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules.
    Leontis NB; Stombaugh J; Westhof E
    Biochimie; 2002 Sep; 84(9):961-73. PubMed ID: 12458088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. WebFR3D--a server for finding, aligning and analyzing recurrent RNA 3D motifs.
    Petrov AI; Zirbel CL; Leontis NB
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W50-5. PubMed ID: 21515634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tools for the automatic identification and classification of RNA base pairs.
    Yang H; Jossinet F; Leontis N; Chen L; Westbrook J; Berman H; Westhof E
    Nucleic Acids Res; 2003 Jul; 31(13):3450-60. PubMed ID: 12824344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs.
    Sponer JE; Spackova N; Leszczynski J; Sponer J
    J Phys Chem B; 2005 Jun; 109(22):11399-410. PubMed ID: 16852393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Database of non-canonical base pairs found in known RNA structures.
    Nagaswamy U; Voss N; Zhang Z; Fox GE
    Nucleic Acids Res; 2000 Jan; 28(1):375-6. PubMed ID: 10592279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples.
    Ruszkowska A; Ruszkowski M; Hulewicz JP; Dauter Z; Brown JA
    Nucleic Acids Res; 2020 Apr; 48(6):3304-3314. PubMed ID: 31930330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Mukherjee S; Bansal M; Bhattacharyya D
    J Comput Aided Mol Des; 2006; 20(10-11):629-45. PubMed ID: 17124630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling and Predicting RNA Three-Dimensional Structures.
    Reinharz V; Sarrazin-Gendron R; Waldispühl J
    Methods Mol Biol; 2021; 2284():17-42. PubMed ID: 33835435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated extraction and classification of RNA tertiary structure cyclic motifs.
    Lemieux S; Major F
    Nucleic Acids Res; 2006; 34(8):2340-6. PubMed ID: 16679452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Base pairs and pseudo pairs observed in RNA-ligand complexes.
    Kondo J; Westhof E
    J Mol Recognit; 2010; 23(2):241-52. PubMed ID: 19701919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations.
    Sponer JE; Leszczynski J; Sychrovský V; Sponer J
    J Phys Chem B; 2005 Oct; 109(39):18680-9. PubMed ID: 16853403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The crystal structure of the octamer [r(guauaca)dC]2 with six Watson-Crick base-pairs and two 3' overhang residues.
    Shi K; Biswas R; Mitra SN; Sundaralingam M
    J Mol Biol; 2000 May; 299(1):113-22. PubMed ID: 10860726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo discovery of structural motifs in RNA 3D structures through clustering.
    Ge P; Islam S; Zhong C; Zhang S
    Nucleic Acids Res; 2018 May; 46(9):4783-4793. PubMed ID: 29534235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular recognition by glycoside pseudo base pairs and triples in an apramycin-RNA complex.
    Han Q; Zhao Q; Fish S; Simonsen KB; Vourloumis D; Froelich JM; Wall D; Hermann T
    Angew Chem Int Ed Engl; 2005 Apr; 44(18):2694-2700. PubMed ID: 15849690
    [No Abstract]   [Full Text] [Related]  

  • 37. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation.
    Gautheret D; Gutell RR
    Nucleic Acids Res; 1997 Apr; 25(8):1559-64. PubMed ID: 9092662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure.
    Reinharz V; Major F; Waldispühl J
    Bioinformatics; 2012 Jun; 28(12):i207-14. PubMed ID: 22689763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isostericity and tautomerism of base pairs in nucleic acids.
    Westhof E
    FEBS Lett; 2014 Aug; 588(15):2464-9. PubMed ID: 24950426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.