BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22053465)

  • 1. A study on ruthenium-based catalysts for pharmaceutical wastewater treatment.
    Lei YJ; Wang XB; Song C; Li FH; Wang XR
    Water Sci Technol; 2011; 64(1):117-21. PubMed ID: 22053465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.
    Yang M; Sun Y; Xu AH; Lu XY; Du HZ; Sun CL; Li C
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):66-70. PubMed ID: 17593307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.
    Yadav BR; Garg A
    Environ Technol; 2016; 37(8):1018-25. PubMed ID: 26508075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.
    Liu WM; Hu YQ; Tu ST
    J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient degradation of pharmaceutical sludge by catalytic wet oxidation using CuO-CeO2/γ-Al2O3 as a catalyst.
    Zeng X; Liu J; Zhao J
    PLoS One; 2018; 13(10):e0199520. PubMed ID: 30303969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe
    Zeng X; Liu J; Zhao J
    Water Sci Technol; 2018 Jul; 2017(3):661-666. PubMed ID: 30016283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts.
    Sriprom P; Neramittagapong S; Lin C; Wantala K; Neramittagapong A; Grisdanurak N
    J Air Waste Manag Assoc; 2015 Jul; 65(7):828-36. PubMed ID: 26079556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic hydrothermal treatment of pulping effluent using a mixture of Cu and Mn metals supported on activated carbon as catalyst.
    Yadav BR; Garg A
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20081-20086. PubMed ID: 26354113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential treatment via Trametes versicolor and UV/TiO2/Ru(x)Se(y) to reduce contaminants in waste water resulting from the bleaching process during paper production.
    Pedroza AM; Mosqueda R; Alonso-Vante N; Rodríguez-Vázquez R
    Chemosphere; 2007 Mar; 67(4):793-801. PubMed ID: 17123583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of ammonia solutions used in catalytic wet oxidation processes.
    Hung CM; Lou JC; Lin CH
    Chemosphere; 2003 Aug; 52(6):989-95. PubMed ID: 12781232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wet air oxidation of epoxy acrylate monomer industrial wastewater.
    Yang S; Liu Z; Huang X; Zhang B
    J Hazard Mater; 2010 Jun; 178(1-3):786-91. PubMed ID: 20207076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.
    Zhan W; Wang X; Li D; Ren Y; Liu D; Kang J
    Water Sci Technol; 2013; 67(10):2281-6. PubMed ID: 23676399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical water oxidation of acrylic acid production wastewater.
    Gong YM; Wang SZ; Tang XY; Xu DH; Ma HH
    Environ Technol; 2014; 35(5-8):907-16. PubMed ID: 24645473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.
    Li N; Descorme C; Besson M
    J Hazard Mater; 2007 Jul; 146(3):602-9. PubMed ID: 17513043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The degradation of Isophorone by catalytic wet air oxidation on Ru/TiZrO4.
    Wei H; Yan X; Li X; He S; Sun C
    J Hazard Mater; 2013 Jan; 244-245():478-88. PubMed ID: 23183344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Catalytic wet oxidation of simulated wastewater succinic acid aqueous solution].
    Zhang S; Tu X; Yang Z; Li Z; Yang Y; Qian B; Hong P
    Huan Jing Ke Xue; 2003 Jan; 24(1):107-12. PubMed ID: 12708299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania.
    Song A; Lu G
    Environ Technol; 2015; 36(9-12):1160-6. PubMed ID: 25358013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic thermal treatment of desizing wastewaters.
    Kumar P; Prasad B; Mishra IM; Chand S
    J Hazard Mater; 2007 Oct; 149(1):26-34. PubMed ID: 17459578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.