BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 22053757)

  • 1. Effect of chronic protein ingestion on tyrosine and tryptophan levels and catecholamine and serotonin synthesis in rat brain.
    Choi S; DiSilvio B; Fernstrom MH; Fernstrom JD
    Nutr Neurosci; 2011 Nov; 14(6):260-7. PubMed ID: 22053757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meal ingestion, amino acids and brain neurotransmitters: effects of dietary protein source on serotonin and catecholamine synthesis rates.
    Choi S; Disilvio B; Fernstrom MH; Fernstrom JD
    Physiol Behav; 2009 Aug; 98(1-2):156-62. PubMed ID: 19454292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chronic ingestion of diets containing different proteins produces marked variations in brain tryptophan levels and serotonin synthesis in the rat.
    Choi S; DiSilvio B; Fernstrom MH; Fernstrom JD
    Neurochem Res; 2011 Mar; 36(3):559-65. PubMed ID: 21207140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.
    Choi S; Disilvio B; Fernstrom MH; Fernstrom JD
    Amino Acids; 2013 Nov; 45(5):1133-42. PubMed ID: 23904096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acute effects of reserpine and NSD-1015 on the brain serotonin synthesis rate measured by an autoradiographic method.
    Mück-Seler D; Diksic M
    Neuropsychopharmacology; 1995 May; 12(3):251-62. PubMed ID: 7612159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effect of immobilization stress on in vivo synthesis rate of monoamines in medial prefrontal cortex and nucleus accumbens of conscious rats.
    Nakahara D; Nakamura M
    Synapse; 1999 Jun; 32(3):238-42. PubMed ID: 10340633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional changes in monoamine synthesis in the developing rat brain during hypoxia.
    Hedner T; Lundborg P
    Acta Physiol Scand; 1979 Jun; 106(2):139-43. PubMed ID: 41406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of brain monoamine synthesis by diet and plasma amino acids.
    Wurtman RJ; Fernstrom JD
    Am J Clin Nutr; 1975 Jun; 28(6):638-47. PubMed ID: 1093382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary protein ingested before and during short photoperiods makes an impact on affect-related behaviours and plasma composition of amino acids in mice.
    Otsuka T; Goda R; Iwamoto A; Kawai M; Shibata S; Oka Y; Mizunoya W; Furuse M; Yasuo S
    Br J Nutr; 2015 Nov; 114(10):1734-43. PubMed ID: 26370332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects on the diet on brain neurotransmitters.
    Fernstrom JD
    Metabolism; 1977 Feb; 26(2):207-23. PubMed ID: 13261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hypercapnia and hypocapnia on tryptophan and tyrosine hydroxylation in rat brain.
    Carlsson A; Holmin T; Lindqvist M; Siesjö BK
    Acta Physiol Scand; 1977 Apr; 99(4):503-9. PubMed ID: 16438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chronic protein ingestion on rat central nervous system tyrosine levels and in vivo tyrosine hydroxylation rate.
    Fernstrom MH; Fernstrom JD
    Brain Res; 1995 Feb; 672(1-2):97-103. PubMed ID: 7749758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thyroid state and brain monoamine metabolism.
    Jacoby JH; Mueller G; Wurtman RJ
    Endocrinology; 1975 Nov; 97(5):1332-5. PubMed ID: 1081048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age related changes in the effect of electroconvulsive shock (ECS) on the in vivo hydroxylation of tyrosine and tryptophan in rat brain.
    McNamara MC; Miller AT; Benignus VA; Davis JN
    Brain Res; 1977 Aug; 131(2):313-20. PubMed ID: 302136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous measurement of 5-hydroxytryptophan and L-dihydroxyphenylalanine by high-performance liquid chromatography with electrochemical detection. Measurement of serotonin and catecholamine turnover in discrete brain regions.
    Shum A; Sole MJ; Van Loon GR
    J Chromatogr; 1982 Mar; 228():123-30. PubMed ID: 6978886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma tryptophan levels and brain serotonin metabolism in chronically uremic rats.
    Siassi F; Wang M; Kopple JD; Swendseid ME
    J Nutr; 1977 May; 107(5):840-5. PubMed ID: 558284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sexual interactions on the in vivo rate of monoamine synthesis in forebrain regions of the male rat.
    Ahlenius S; Hillegaart V; Hjorth S; Larsson K
    Behav Brain Res; 1991 Dec; 46(2):117-22. PubMed ID: 1786120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-selected meal composition, circadian rhythms and meal responses in plasma and brain tryptophan and 5-hydroxytryptamine in rats.
    Li ET; Anderson GH
    J Nutr; 1982 Nov; 112(11):2001-10. PubMed ID: 6182276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ingestion of different dietary proteins by humans induces large changes in the plasma tryptophan ratio, a predictor of brain tryptophan uptake and serotonin synthesis.
    Fernstrom JD; Langham KA; Marcelino LM; Irvine ZL; Fernstrom MH; Kaye WH
    Clin Nutr; 2013 Dec; 32(6):1073-6. PubMed ID: 23395255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase.
    Carlsson A; Davis JN; Kehr W; Lindqvist M; Atack CV
    Naunyn Schmiedebergs Arch Pharmacol; 1972; 275(2):153-68. PubMed ID: 4404948
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.