BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22053817)

  • 41. Molecular Subtyping and Tracking of Listeria monocytogenes in Latin-Style Fresh-Cheese Processing Plants.
    Kabuki DY; Kuaye AY; Wiedmann M; Boor KJ
    J Dairy Sci; 2004 Sep; 87(9):2803-12. PubMed ID: 15375038
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aerobic plate counts and ATP levels correlate with Listeria monocytogenes detection in retail delis.
    Hammons SR; Stasiewicz MJ; Roof S; Oliver HF
    J Food Prot; 2015 Apr; 78(4):825-30. PubMed ID: 25836412
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Outbreak of invasive listeriosis associated with the consumption of hog head cheese--Louisiana, 2010.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2011 Apr; 60(13):401-5. PubMed ID: 21471946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prevalence of Listeria monocytogenes in 13 dried sausage processing plants and their products.
    Thévenot D; Delignette-Muller ML; Christieans S; Vernozy-Rozand C
    Int J Food Microbiol; 2005 Jun; 102(1):85-94. PubMed ID: 15925005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Food-borne Listeria monocytogenes risk assessment.
    Hitchins AD; Whiting RC
    Food Addit Contam; 2001 Dec; 18(12):1108-17. PubMed ID: 11761122
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Listeria monocytogenes in RTE foods marketed in Italy: prevalence and automated EcoRI ribotyping of the isolates.
    Meloni D; Galluzzo P; Mureddu A; Piras F; Griffiths M; Mazzette R
    Int J Food Microbiol; 2009 Feb; 129(2):166-73. PubMed ID: 19100643
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial ecology of food contact surfaces and products of small-scale facilities producing traditional sausages.
    Gounadaki AS; Skandamis PN; Drosinos EH; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):313-23. PubMed ID: 18206774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genomic and Transcriptomic Analysis of Biofilm Formation in Persistent and Transient
    Assisi C; Forauer E; Oliver HF; Etter AJ
    Foodborne Pathog Dis; 2021 Mar; 18(3):179-188. PubMed ID: 33227214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A quantitative risk assessment of Listeria monocytogenes from prevalence and concentration data: Application to a traditional ready to eat (RTE) meat product.
    Hadjicharalambous C; Grispoldi L; Chalias T; Cenci-Goga B
    Int J Food Microbiol; 2022 Oct; 379():109843. PubMed ID: 35952465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Occurrence of Listeria monocytogenes in Counter-Sliced Turkey Meat Samples from Independent Delis in New York City.
    Mujahid S; Miranda R; Rogers JE
    J Food Prot; 2021 Apr; 84(4):587-591. PubMed ID: 33211871
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Serving high-risk foods in a high-risk setting: survey of hospital food service practices after an outbreak of listeriosis in a hospital.
    Cokes C; France AM; Reddy V; Hanson H; Lee L; Kornstein L; Stavinsky F; Balter S
    Infect Control Hosp Epidemiol; 2011 Apr; 32(4):380-6. PubMed ID: 21460490
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of prevention measures on incidence of human listeriosis, France, 1987-1997.
    Goulet V; de Valk H; Pierre O; Stainer F; Rocourt J; Vaillant V; Jacquet C; Desenclos JC
    Emerg Infect Dis; 2001; 7(6):983-9. PubMed ID: 11747725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Foodborne proportion of gastrointestinal illness: estimates from a Canadian expert elicitation survey.
    Ravel A; Davidson VJ; Ruzante JM; Fazil A
    Foodborne Pathog Dis; 2010 Dec; 7(12):1463-72. PubMed ID: 20704505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative microbiological risk assessment as a tool to obtain useful information for risk managers--specific application to Listeria monocytogenes and ready-to-eat meat products.
    Mataragas M; Zwietering MH; Skandamis PN; Drosinos EH
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S170-9. PubMed ID: 20116877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surveillance of listeriosis in Navarre, Spain, 1995-2005--epidemiological patterns and characterisation of clinical and food isolates.
    Garrido V; Torroba L; García-Jalón I; Vitas AI
    Euro Surveill; 2008 Dec; 13(49):. PubMed ID: 19081001
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Factors associated with Listeria monocytogenes contamination of cold-smoked pork products produced in Latvia and Lithuania.
    Bērziņs A; Hörman A; Lundén J; Korkeala H
    Int J Food Microbiol; 2007 Apr; 115(2):173-9. PubMed ID: 17174432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products.
    Sofos JN; Geornaras I
    Meat Sci; 2010 Sep; 86(1):2-14. PubMed ID: 20510532
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Widespread listeriosis outbreak attributable to pasteurized cheese, which led to extensive cross-contamination affecting cheese retailers, Quebec, Canada, 2008.
    Gaulin C; Ramsay D; Bekal S
    J Food Prot; 2012 Jan; 75(1):71-8. PubMed ID: 22221357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Measuring the control and decrease in prevalence of Listeria monocytogenes species in foods of animal origin].
    Caplan ME
    Bacteriol Virusol Parazitol Epidemiol; 2011; 56(1):51-62. PubMed ID: 23745223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An updated review of Listeria monocytogenes in the pork meat industry and its products.
    Thévenot D; Dernburg A; Vernozy-Rozand C
    J Appl Microbiol; 2006 Jul; 101(1):7-17. PubMed ID: 16834586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.