These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 22053896)
1. F-Doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol. Gasparotto A; Barreca D; Bekermann D; Devi A; Fischer RA; Fornasiero P; Gombac V; Lebedev OI; Maccato C; Montini T; Van Tendeloo G; Tondello E J Am Chem Soc; 2011 Dec; 133(48):19362-5. PubMed ID: 22053896 [TBL] [Abstract][Full Text] [Related]
2. Ti(iv) doped WO₃ nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance. Feng C; Wang S; Geng B Nanoscale; 2011 Sep; 3(9):3695-9. PubMed ID: 21785781 [TBL] [Abstract][Full Text] [Related]
3. Water splitting on semiconductor catalysts under visible-light irradiation. Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754 [TBL] [Abstract][Full Text] [Related]
4. Solar photochemical and thermochemical splitting of water. Rao CN; Lingampalli SR; Dey S; Roy A Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755752 [TBL] [Abstract][Full Text] [Related]
5. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related]
6. Splitting water with cobalt. Artero V; Chavarot-Kerlidou M; Fontecave M Angew Chem Int Ed Engl; 2011 Aug; 50(32):7238-66. PubMed ID: 21748828 [TBL] [Abstract][Full Text] [Related]
7. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts. Wang X; Shih K; Li XY Water Sci Technol; 2010; 61(9):2303-8. PubMed ID: 20418627 [TBL] [Abstract][Full Text] [Related]
8. Photocatalytic H2 production from water with rhenium and cobalt complexes. Probst B; Guttentag M; Rodenberg A; Hamm P; Alberto R Inorg Chem; 2011 Apr; 50(8):3404-12. PubMed ID: 21366324 [TBL] [Abstract][Full Text] [Related]
9. Hollow AgI:Ag nanoframes as solar photocatalysts for hydrogen generation from water reduction. An C; Wang J; Liu J; Wang S; Sun Y ChemSusChem; 2013 Oct; 6(10):1931-7. PubMed ID: 24105996 [TBL] [Abstract][Full Text] [Related]
10. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst. Wang P; Dimitrijevic NM; Chang AY; Schaller RD; Liu Y; Rajh T; Rozhkova EA ACS Nano; 2014 Aug; 8(8):7995-8002. PubMed ID: 25050831 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen. Wu MC; Hiltunen J; Sápi A; Avila A; Larsson W; Liao HC; Huuhtanen M; Tóth G; Shchukarev A; Laufer N; Kukovecz Á; Kónya Z; Mikkola JP; Keiski R; Su WF; Chen YF; Jantunen H; Ajayan PM; Vajtai R; Kordás K ACS Nano; 2011 Jun; 5(6):5025-30. PubMed ID: 21568315 [TBL] [Abstract][Full Text] [Related]
12. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. Gunjakar JL; Kim TW; Kim HN; Kim IY; Hwang SJ J Am Chem Soc; 2011 Sep; 133(38):14998-5007. PubMed ID: 21861530 [TBL] [Abstract][Full Text] [Related]
13. Nanostructured VO2 photocatalysts for hydrogen production. Wang Y; Zhang Z; Zhu Y; Li Z; Vajtai R; Ci L; Ajayan PM ACS Nano; 2008 Jul; 2(7):1492-6. PubMed ID: 19206320 [TBL] [Abstract][Full Text] [Related]
14. N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Lavorato C; Primo A; Molinari R; Garcia H Chemistry; 2014 Jan; 20(1):187-94. PubMed ID: 24327304 [TBL] [Abstract][Full Text] [Related]
15. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. Yang J; Walczak K; Anzenberg E; Toma FM; Yuan G; Beeman J; Schwartzberg A; Lin Y; Hettick M; Javey A; Ager JW; Yano J; Frei H; Sharp ID J Am Chem Soc; 2014 Apr; 136(17):6191-4. PubMed ID: 24720554 [TBL] [Abstract][Full Text] [Related]
16. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production. Jaramillo TF; Baeck SH; Kleiman-Shwarsctein A; Choi KS; Stucky GD; McFarland EW J Comb Chem; 2005; 7(2):264-71. PubMed ID: 15762755 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen doped Sr₂Ta₂O₇ coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. Mukherji A; Seger B; Lu GQ; Wang L ACS Nano; 2011 May; 5(5):3483-92. PubMed ID: 21488687 [TBL] [Abstract][Full Text] [Related]
18. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts. Pereira EB; de la Piscina PR; Homs N Bioresour Technol; 2011 Feb; 102(3):3419-23. PubMed ID: 21044836 [TBL] [Abstract][Full Text] [Related]
19. Porous Co3O4 nanowires derived from long Co(CO3)(0.5)(OH)·0.11H2O nanowires with improved supercapacitive properties. Wang B; Zhu T; Wu HB; Xu R; Chen JS; Lou XW Nanoscale; 2012 Mar; 4(6):2145-9. PubMed ID: 22337265 [TBL] [Abstract][Full Text] [Related]
20. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Wang X; Liu G; Chen ZG; Li F; Wang L; Lu GQ; Cheng HM Chem Commun (Camb); 2009 Jun; (23):3452-4. PubMed ID: 19503901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]