These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 2205398)

  • 21. GAL4 derivatives function alone and synergistically with mammalian activators in vitro.
    Lin YS; Carey MF; Ptashne M; Green MR
    Cell; 1988 Aug; 54(5):659-64. PubMed ID: 3044607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The transcriptional activation function located in the hormone-binding domain of the human oestrogen receptor is not encoded in a single exon.
    Webster NJ; Green S; Tasset D; Ponglikitmongkol M; Chambon P
    EMBO J; 1989 May; 8(5):1441-6. PubMed ID: 2767048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoter specificity of the two transcriptional activation functions of the human oestrogen receptor in yeast.
    Metzger D; Losson R; Bornert JM; Lemoine Y; Chambon P
    Nucleic Acids Res; 1992 Jun; 20(11):2813-7. PubMed ID: 1614867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional domains of the heavy metal-responsive transcription regulator MTF-1.
    Radtke F; Georgiev O; Müller HP; Brugnera E; Schaffner W
    Nucleic Acids Res; 1995 Jun; 23(12):2277-86. PubMed ID: 7610056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro activity of the transcription activation functions of the progesterone receptor. Evidence for intermediary factors.
    Shemshedini L; Ji JW; Brou C; Chambon P; Gronemeyer H
    J Biol Chem; 1992 Jan; 267(3):1834-9. PubMed ID: 1730721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
    Larschan E; Winston F
    Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Negative effect of the transcriptional activator GAL4.
    Gill G; Ptashne M
    Nature; 1988 Aug; 334(6184):721-4. PubMed ID: 3412449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors.
    Yoshinaga SK; Peterson CL; Herskowitz I; Yamamoto KR
    Science; 1992 Dec; 258(5088):1598-604. PubMed ID: 1360703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergistic transcriptional activation by CTF/NF-I and the estrogen receptor involves stabilized interactions with a limiting target factor.
    Martinez E; Dusserre Y; Wahli W; Mermod N
    Mol Cell Biol; 1991 Jun; 11(6):2937-45. PubMed ID: 2038313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergism between Tat and VP16 in trans-activation of HIV-1 LTR.
    Ghosh S; Selby MJ; Peterlin BM
    J Mol Biol; 1993 Dec; 234(3):610-9. PubMed ID: 8254663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different regions of the estrogen receptor are required for synergistic action with the glucocorticoid and progesterone receptors.
    Cato AC; Ponta H
    Mol Cell Biol; 1989 Dec; 9(12):5324-30. PubMed ID: 2586523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription regulation by murine B-myb is distinct from that by c-myb.
    Watson RJ; Robinson C; Lam EW
    Nucleic Acids Res; 1993 Jan; 21(2):267-72. PubMed ID: 8382794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The transactivator proteins VP16 and GAL4 bind replication factor A.
    He Z; Brinton BT; Greenblatt J; Hassell JA; Ingles CJ
    Cell; 1993 Jun; 73(6):1223-32. PubMed ID: 8513504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic analysis of essential yeast TAFs in genome-wide transcription and preinitiation complex assembly.
    Shen WC; Bhaumik SR; Causton HC; Simon I; Zhu X; Jennings EG; Wang TH; Young RA; Green MR
    EMBO J; 2003 Jul; 22(13):3395-402. PubMed ID: 12840001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional analysis of aryl hydrocarbon receptor nuclear translocator interactions with aryl hydrocarbon receptor in the yeast two-hybrid system.
    Yamaguchi Y; Kuo MT
    Biochem Pharmacol; 1995 Oct; 50(8):1295-302. PubMed ID: 7488247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulated GAL4 expression cassette providing controllable and high-level output from high-copy galactose promoters in yeast.
    Mylin LM; Hofmann KJ; Schultz LD; Hopper JE
    Methods Enzymol; 1990; 185():297-308. PubMed ID: 2199783
    [No Abstract]   [Full Text] [Related]  

  • 38. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators.
    Hori R; Pyo S; Carey M
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6047-51. PubMed ID: 7597078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ets1, when fused to the GAL4 DNA binding domain, efficiently enhances galactose promotor dependent gene expression in yeast.
    Seneca S; Punyammalee B; Bailly M; Ghysdael J; Crabeel M
    Oncogene; 1991 Mar; 6(3):357-60. PubMed ID: 1901401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GAL4 is phosphorylated as a consequence of transcriptional activation.
    Sadowski I; Niedbala D; Wood K; Ptashne M
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10510-4. PubMed ID: 1961715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.