These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 2205398)

  • 61. RuX: A Novel, Flexible, and Sensitive Mifepristone-Induced Transcriptional Regulation System.
    Meinzinger A; Zsigmond Á; Horváth P; Kellenberger A; Paréj K; Tallone T; Flachner B; Cserhalmi M; Lőrincz Z; Cseh S; Shmerling D
    Int J Cell Biol; 2023; 2023():7121512. PubMed ID: 37941807
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nuclear Receptor Pathways Mediating the Development of Boar Taint.
    Bone C; Squires EJ
    Metabolites; 2022 Aug; 12(9):. PubMed ID: 36144190
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells.
    Jones RD; Qian Y; Siciliano V; DiAndreth B; Huh J; Weiss R; Del Vecchio D
    Nat Commun; 2020 Nov; 11(1):5690. PubMed ID: 33173034
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Application of the human estrogen receptor within a synthetic transcription factor in
    Derntl C; Mach R; Mach-Aigner A
    Fungal Biol Biotechnol; 2020; 7():12. PubMed ID: 32765896
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular mechanism of estrogen-estrogen receptor signaling.
    Yaşar P; Ayaz G; User SD; Güpür G; Muyan M
    Reprod Med Biol; 2017 Jan; 16(1):4-20. PubMed ID: 29259445
    [TBL] [Abstract][Full Text] [Related]  

  • 66. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.
    Chen S; Wang H; Huang YF; Li ML; Cheng JH; Hu P; Lu CH; Zhang Y; Liu N; Tzeng CM; Zhang ZM
    Mol Cancer; 2017 Jul; 16(1):128. PubMed ID: 28724435
    [TBL] [Abstract][Full Text] [Related]  

  • 67. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression.
    Hua G; Paulen L; Chambon P
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):E626-34. PubMed ID: 26712002
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rapid suppression of inhibitory synaptic transmission by retinoic acid.
    Sarti F; Zhang Z; Schroeder J; Chen L
    J Neurosci; 2013 Jul; 33(28):11440-50. PubMed ID: 23843516
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nuclear receptors in bone physiology and diseases.
    Imai Y; Youn MY; Inoue K; Takada I; Kouzmenko A; Kato S
    Physiol Rev; 2013 Apr; 93(2):481-523. PubMed ID: 23589826
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nuclear receptors and their selective pharmacologic modulators.
    Burris TP; Solt LA; Wang Y; Crumbley C; Banerjee S; Griffett K; Lundasen T; Hughes T; Kojetin DJ
    Pharmacol Rev; 2013 Apr; 65(2):710-78. PubMed ID: 23457206
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synaptic retinoic acid signaling and homeostatic synaptic plasticity.
    Chen L; Lau AG; Sarti F
    Neuropharmacology; 2014 Mar; 78():3-12. PubMed ID: 23270606
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice.
    Börjesson AE; Farman HH; Engdahl C; Koskela A; Sjögren K; Kindblom JM; Stubelius A; Islander U; Carlsten H; Antal MC; Krust A; Chambon P; Tuukkanen J; Lagerquist MK; Windahl SH; Ohlsson C
    J Bone Miner Res; 2013 May; 28(5):1117-26. PubMed ID: 23225083
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Conditional RARα knockout mice reveal acute requirement for retinoic acid and RARα in homeostatic plasticity.
    Sarti F; Schroeder J; Aoto J; Chen L
    Front Mol Neurosci; 2012; 5():16. PubMed ID: 22419906
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1.
    Aras S; Singh G; Johnston K; Foster T; Aiyar A
    PLoS Pathog; 2009 Jun; 5(6):e1000469. PubMed ID: 19521517
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Acetylation in nuclear receptor signaling and the role of sirtuins.
    Wang C; Powell MJ; Popov VM; Pestell RG
    Mol Endocrinol; 2008 Mar; 22(3):539-45. PubMed ID: 18165438
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A mouse model of conditional lipodystrophy.
    Kim S; Huang LW; Snow KJ; Ablamunits V; Hasham MG; Young TH; Paulk AC; Richardson JE; Affourtit JP; Shalom-Barak T; Bult CJ; Barak Y
    Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16627-32. PubMed ID: 17921248
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations.
    Lavery DN; McEwan IJ
    Biochem J; 2005 Nov; 391(Pt 3):449-64. PubMed ID: 16238547
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors.
    Edwards DP
    J Mammary Gland Biol Neoplasia; 2000 Jul; 5(3):307-24. PubMed ID: 14973393
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs.
    He B; Wilson EM
    Mol Cell Biol; 2003 Mar; 23(6):2135-50. PubMed ID: 12612084
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sp100 interacts with ETS-1 and stimulates its transcriptional activity.
    Wasylyk C; Schlumberger SE; Criqui-Filipe P; Wasylyk B
    Mol Cell Biol; 2002 Apr; 22(8):2687-702. PubMed ID: 11909962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.