These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 22054300)

  • 1. Viscoelastic property mapping with contact resonance force microscopy.
    Killgore JP; Yablon DG; Tsou AH; Gannepalli A; Yuya PA; Turner JA; Proksch R; Hurley DC
    Langmuir; 2011 Dec; 27(23):13983-7. PubMed ID: 22054300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Mapping of Nanoblisters Confined by Two-Dimensional Materials Reveals Complex Ridge Patterns.
    Ma C; Yang X; Chen Y; Chu J
    Langmuir; 2024 Apr; 40(16):8409-8417. PubMed ID: 38588456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy.
    Piacenti AR; Adam C; Hawkins N; Wagner R; Seifert J; Taniguchi Y; Proksch R; Contera S
    Macromolecules; 2024 Feb; 57(3):1118-1127. PubMed ID: 38370912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Relative Humidity Impact on Biological Protein Bovine Serum Albumin and Bovine Submaxillary Gland Mucin by Using Contact Resonance Atomic Force Microscopy.
    Kakar E; Riaz S; Naseem S
    ACS Omega; 2023 Sep; 8(36):32765-32774. PubMed ID: 37720735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital light processing in a hybrid atomic force microscope:
    Higgins CI; Brown TE; Killgore JP
    Addit Manuf; 2021 Feb; 38():. PubMed ID: 34268068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges.
    López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2020; 11():1409-1418. PubMed ID: 33014681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact Resonance Atomic Force Microscopy Using Long, Massive Tips.
    Jaquez-Moreno T; Aureli M; Tung ARC
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31731825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy.
    Abooalizadeh Z; Sudak LJ; Egberts P
    Beilstein J Nanotechnol; 2019; 10():1332-1347. PubMed ID: 31355102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring Fast, Voxel-Scale Cure Kinetics via Sample-Coupled-Resonance Photorheology.
    Fiedler-Higgins CI; Cox LM; DelRio FW; Killgore JP
    Small Methods; 2019 Feb; 3(2):. PubMed ID: 31289746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures.
    Cellini F; Gao Y; Riedo E
    Sci Rep; 2019 Mar; 9(1):4075. PubMed ID: 30858472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-veracity functional imaging in scanning probe microscopy via Graph-Bootstrapping.
    Li X; Collins L; Miyazawa K; Fukuma T; Jesse S; Kalinin SV
    Nat Commun; 2018 Jun; 9(1):2428. PubMed ID: 29930246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning speed phenomenon in contact-resonance atomic force microscopy.
    Glover CC; Killgore JP; Tung RC
    Beilstein J Nanotechnol; 2018; 9():945-952. PubMed ID: 29600154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation.
    Diaz AJ; Noh H; Meier T; Solares SD
    Beilstein J Nanotechnol; 2017; 8():2069-2082. PubMed ID: 29090109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Hertz model for bimodal nanomechanical mapping.
    Labuda A; Kocuń M; Meinhold W; Walters D; Proksch R
    Beilstein J Nanotechnol; 2016; 7():970-82. PubMed ID: 27547614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.
    Solares SD
    Beilstein J Nanotechnol; 2016; 7():554-71. PubMed ID: 27335746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy.
    Solares SD
    Beilstein J Nanotechnol; 2015; 6():2233-41. PubMed ID: 26734515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.
    Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW
    Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy.
    Phani MK; Kumar A; Jayakumar T; Arnold W; Samwer K
    Beilstein J Nanotechnol; 2015; 6():767-76. PubMed ID: 25977847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model.
    Solares SD
    Beilstein J Nanotechnol; 2014; 5():1649-63. PubMed ID: 25383277
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.