These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 22054536)
1. The use of air-flow impedance to control fiber deposition patterns during electrospinning. McClure MJ; Wolfe PS; Simpson DG; Sell SA; Bowlin GL Biomaterials; 2012 Jan; 33(3):771-9. PubMed ID: 22054536 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of cell penetration enhanced poly (l-lactic acid-co-ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning. Yin A; Li J; Bowlin GL; Li D; Rodriguez IA; Wang J; Wu T; Ei-Hamshary HA; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2014 Aug; 120():47-54. PubMed ID: 24905678 [TBL] [Abstract][Full Text] [Related]
3. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540 [TBL] [Abstract][Full Text] [Related]
4. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388 [TBL] [Abstract][Full Text] [Related]
5. Electrospinning of Biosyn(®)-based tubular conduits: structural, morphological, and mechanical characterizations. Thomas V; Donahoe T; Nyairo E; Dean DR; Vohra YK Acta Biomater; 2011 May; 7(5):2070-9. PubMed ID: 21232639 [TBL] [Abstract][Full Text] [Related]
6. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Soliman S; Pagliari S; Rinaldi A; Forte G; Fiaccavento R; Pagliari F; Franzese O; Minieri M; Di Nardo P; Licoccia S; Traversa E Acta Biomater; 2010 Apr; 6(4):1227-37. PubMed ID: 19887125 [TBL] [Abstract][Full Text] [Related]
7. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Li D; Wu T; He N; Wang J; Chen W; He L; Huang C; Ei-Hamshary HA; Al-Deyab SS; Ke Q; Mo X Colloids Surf B Biointerfaces; 2014 Sep; 121():432-43. PubMed ID: 24996758 [TBL] [Abstract][Full Text] [Related]
9. A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering. Smits AI; Driessen-Mol A; Bouten CV; Baaijens FP Tissue Eng Part C Methods; 2012 Jun; 18(6):475-85. PubMed ID: 22224590 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. Ko J; Mohtaram NK; Ahmed F; Montgomery A; Carlson M; Lee PC; Willerth SM; Jun MB J Biomater Sci Polym Ed; 2014; 25(1):1-17. PubMed ID: 23998440 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone). Theiler S; Mela P; Diamantouros SE; Jockenhoevel S; Keul H; Möller M Biotechnol Bioeng; 2011 Mar; 108(3):694-703. PubMed ID: 21246513 [TBL] [Abstract][Full Text] [Related]
12. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system. Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097 [TBL] [Abstract][Full Text] [Related]
13. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS Biomaterials; 2011 Oct; 32(28):6729-36. PubMed ID: 21683438 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Chandrasekaran AR; Venugopal J; Sundarrajan S; Ramakrishna S Biomed Mater; 2011 Feb; 6(1):015001. PubMed ID: 21205999 [TBL] [Abstract][Full Text] [Related]
15. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Kim GH Biomed Mater; 2008 Jun; 3(2):025010. PubMed ID: 18458365 [TBL] [Abstract][Full Text] [Related]
16. Bilayered scaffold for engineering cellularized blood vessels. Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414 [TBL] [Abstract][Full Text] [Related]
17. Breast epithelial cell infiltration in enhanced electrospun silk scaffolds. Maghdouri-White Y; Elmore LW; Bowlin GL; Dréau D J Tissue Eng Regen Med; 2016 Feb; 10(2):E121-31. PubMed ID: 23798502 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927 [TBL] [Abstract][Full Text] [Related]
19. Comparison of cellular proliferation on dense and porous PCL scaffolds. Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692 [TBL] [Abstract][Full Text] [Related]
20. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]