These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 22054536)
21. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
22. Increasing the pore size of electrospun scaffolds. Rnjak-Kovacina J; Weiss AS Tissue Eng Part B Rev; 2011 Oct; 17(5):365-72. PubMed ID: 21815802 [TBL] [Abstract][Full Text] [Related]
23. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961 [TBL] [Abstract][Full Text] [Related]
24. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
25. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996 [TBL] [Abstract][Full Text] [Related]
26. Tissue engineering scaffolds for the regeneration of craniofacial bone. Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334 [TBL] [Abstract][Full Text] [Related]
27. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765 [TBL] [Abstract][Full Text] [Related]
28. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Moroni L; de Wijn JR; van Blitterswijk CA Biomaterials; 2006 Mar; 27(7):974-85. PubMed ID: 16055183 [TBL] [Abstract][Full Text] [Related]
29. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302 [TBL] [Abstract][Full Text] [Related]
31. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Park SH; Kim TG; Kim HC; Yang DY; Park TG Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008 [TBL] [Abstract][Full Text] [Related]
32. Electrospun scaffold topography affects endothelial cell proliferation, metabolic activity, and morphology. Heath DE; Lannutti JJ; Cooper SL J Biomed Mater Res A; 2010 Sep; 94(4):1195-204. PubMed ID: 20694986 [TBL] [Abstract][Full Text] [Related]
33. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering. Jiang X; Yu F; Wang Z; Li J; Tan H; Ding M; Fu Q J Biomater Sci Polym Ed; 2010; 21(12):1637-52. PubMed ID: 20537246 [TBL] [Abstract][Full Text] [Related]
34. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Sonseca A; Sahay R; Stepien K; Bukala J; Wcislek A; McClain A; Sobolewski P; Sui X; Puskas JE; Kohn J; Wagner HD; El Fray M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110505. PubMed ID: 31923996 [TBL] [Abstract][Full Text] [Related]
35. Porous biodegradable scaffold: predetermined porosity by dissolution of poly(ester-anhydride) fibers from polyester matrix. Rich J; Korhonen H; Hakala R; Korventausta J; Elomaa L; Seppälä J Macromol Biosci; 2009 Jul; 9(7):654-60. PubMed ID: 19165824 [TBL] [Abstract][Full Text] [Related]
36. Multifunctional protein-encapsulated polycaprolactone scaffolds: fabrication and in vitro assessment for tissue engineering. Ozkan S; Kalyon DM; Yu X; McKelvey CA; Lowinger M Biomaterials; 2009 Sep; 30(26):4336-47. PubMed ID: 19481253 [TBL] [Abstract][Full Text] [Related]
37. Three-dimensional tissue scaffolds from interbonded poly(ε-caprolactone) fibrous matrices with controlled porosity. Tang Y; Wong C; Wang H; Sutti A; Kirkland M; Wang X; Lin T Tissue Eng Part C Methods; 2011 Feb; 17(2):209-18. PubMed ID: 20799890 [TBL] [Abstract][Full Text] [Related]
38. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Luciani A; Coccoli V; Orsi S; Ambrosio L; Netti PA Biomaterials; 2008 Dec; 29(36):4800-7. PubMed ID: 18834628 [TBL] [Abstract][Full Text] [Related]
39. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants. Li JP; de Wijn JR; van Blitterswijk CA; de Groot K J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798 [TBL] [Abstract][Full Text] [Related]