These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 22054571)

  • 81. Toward a management framework for networks of protected areas in the face of climate change.
    Hole DG; Huntley B; Arinaitwe J; Butchart SH; Collingham YC; Fishpool LD; Pain DJ; Willis SG
    Conserv Biol; 2011 Apr; 25(2):305-15. PubMed ID: 21284728
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Islands in the ice: Potential impacts of habitat transformation on Antarctic biodiversity.
    Lee JR; Waterman MJ; Shaw JD; Bergstrom DM; Lynch HJ; Wall DH; Robinson SA
    Glob Chang Biol; 2022 Oct; 28(20):5865-5880. PubMed ID: 35795907
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Resilience of marine turtle regional management units to climate change.
    Fuentes MM; Pike DA; Dimatteo A; Wallace BP
    Glob Chang Biol; 2013 May; 19(5):1399-406. PubMed ID: 23505145
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Conservation. Challenges to the future conservation of the Antarctic.
    Chown SL; Lee JE; Hughes KA; Barnes J; Barrett PJ; Bergstrom DM; Convey P; Cowan DA; Crosbie K; Dyer G; Frenot Y; Grant SM; Herr D; Kennicutt MC; Lamers M; Murray A; Possingham HP; Reid K; Riddle MJ; Ryan PG; Sanson L; Shaw JD; Sparrow MD; Summerhayes C; Terauds A; Wall DH
    Science; 2012 Jul; 337(6091):158-9. PubMed ID: 22798586
    [No Abstract]   [Full Text] [Related]  

  • 85. Tourism, biodiversity and protected areas--Review from northern Fennoscandia.
    Tolvanen A; Kangas K
    J Environ Manage; 2016 Mar; 169():58-66. PubMed ID: 26720330
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Antarctica's protected areas are inadequate, unrepresentative, and at risk.
    Shaw JD; Terauds A; Riddle MJ; Possingham HP; Chown SL
    PLoS Biol; 2014 Jun; 12(6):e1001888. PubMed ID: 24936869
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Emerging biological archives can reveal ecological and climatic change in Antarctica.
    Strugnell JM; McGregor HV; Wilson NG; Meredith KT; Chown SL; Lau SCY; Robinson SA; Saunders KM
    Glob Chang Biol; 2022 Nov; 28(22):6483-6508. PubMed ID: 35900301
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Key microbial drivers in Antarctic aquatic environments.
    Wilkins D; Yau S; Williams TJ; Allen MA; Brown MV; DeMaere MZ; Lauro FM; Cavicchioli R
    FEMS Microbiol Rev; 2013 May; 37(3):303-35. PubMed ID: 23062173
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Invited review: climate change impacts in polar regions: lessons from Antarctic moss bank archives.
    Royles J; Griffiths H
    Glob Chang Biol; 2015 Mar; 21(3):1041-57. PubMed ID: 25336089
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Long-lasting modification of soil fungal diversity associated with the introduction of rabbits to a remote sub-Antarctic archipelago.
    Pansu J; Winkworth RC; Hennion F; Gielly L; Taberlet P; Choler P
    Biol Lett; 2015 Sep; 11(9):20150408. PubMed ID: 26333663
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Centuries of human-driven change in salt marsh ecosystems.
    Gedan KB; Silliman BR; Bertness MD
    Ann Rev Mar Sci; 2009; 1():117-41. PubMed ID: 21141032
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Introduced and invasive alien species of Antarctica and the Southern Ocean Islands.
    Leihy RI; Peake L; Clarke DA; Chown SL; McGeoch MA
    Sci Data; 2023 Apr; 10(1):200. PubMed ID: 37041141
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Advances of native and non-native Antarctic species to in vitro conservation: improvement of disinfection protocols.
    Cuba-Díaz M; Rivera-Mora C; Navarrete E; Klagges M
    Sci Rep; 2020 Mar; 10(1):3845. PubMed ID: 32123221
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next invader of Antarctica?
    López-Farrán Z; Guillaumot C; Vargas-Chacoff L; Paschke K; Dulière V; Danis B; Poulin E; Saucède T; Waters J; Gérard K
    Glob Chang Biol; 2021 Aug; 27(15):3487-3504. PubMed ID: 33964095
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic.
    Chown SL; Convey P
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2307-31. PubMed ID: 17553768
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Cradles and museums of Antarctic teleost biodiversity.
    Dornburg A; Federman S; Lamb AD; Jones CD; Near TJ
    Nat Ecol Evol; 2017 Sep; 1(9):1379-1384. PubMed ID: 29046532
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Introduction. Antarctic ecology: from genes to ecosystems. Part 2. Evolution, diversity and functional ecology.
    Rogers AD; Murphy EJ; Johnston NM; Clarke A
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2187-9. PubMed ID: 17553772
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Managing shifting species: Ancient DNA reveals conservation conundrums in a dynamic world.
    Waters JM; Grosser S
    Bioessays; 2016 Nov; 38(11):1177-1184. PubMed ID: 27586443
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The changing form of Antarctic biodiversity.
    Chown SL; Clarke A; Fraser CI; Cary SC; Moon KL; McGeoch MA
    Nature; 2015 Jun; 522(7557):431-8. PubMed ID: 26108852
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Improving species-based area protection in Antarctica.
    Phillips LM; Leihy RI; Chown SL
    Conserv Biol; 2022 Aug; 36(4):e13885. PubMed ID: 35040183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.