These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 22054814)

  • 21. Chronic in vivo multi-circuit neurophysiological recordings in mice.
    Dzirasa K; Fuentes R; Kumar S; Potes JM; Nicolelis MA
    J Neurosci Methods; 2011 Jan; 195(1):36-46. PubMed ID: 21115042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for mapping response fields and determining intrinsic reference frames of single-unit activity: applied to 3D head-unrestrained gaze shifts.
    Keith GP; DeSouza JF; Yan X; Wang H; Crawford JD
    J Neurosci Methods; 2009 May; 180(1):171-84. PubMed ID: 19427544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of microdrive arrays for chronic neural recordings in awake behaving mice.
    Chang EH; Frattini SA; Robbiati S; Huerta PT
    J Vis Exp; 2013 Jul; (77):e50470. PubMed ID: 23851569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic multi-electrode neural recording in free-roaming monkeys.
    Eliades SJ; Wang X
    J Neurosci Methods; 2008 Jul; 172(2):201-14. PubMed ID: 18572250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory and cognitive neurophysiology in rats, Part 1: Controlled tactile stimulation and micro-ECoG recordings in freely moving animals.
    Dimitriadis G; Fransen AM; Maris E
    J Neurosci Methods; 2014 Jul; 232():63-73. PubMed ID: 24820913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice.
    Juavinett AL; Bekheet G; Churchland AK
    Elife; 2019 Aug; 8():. PubMed ID: 31411559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A wireless neural recording system with a precision motorized microdrive for freely behaving animals.
    Hasegawa T; Fujimoto H; Tashiro K; Nonomura M; Tsuchiya A; Watanabe D
    Sci Rep; 2015 Jan; 5():7853. PubMed ID: 25597933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A valuable and promising method for recording brain activity in behaving newborn rodents.
    Blumberg MS; Sokoloff G; Tiriac A; Del Rio-Bermudez C
    Dev Psychobiol; 2015 May; 57(4):506-17. PubMed ID: 25864710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A lightweight microdrive for single-unit recording in freely moving rats and pigeons.
    Bilkey DK; Russell N; Colombo M
    Methods; 2003 Jun; 30(2):152-8. PubMed ID: 12725781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain.
    Grinvald A
    Annu Rev Neurosci; 1985; 8():263-305. PubMed ID: 3885828
    [No Abstract]   [Full Text] [Related]  

  • 31. Reconstructing the engram: simultaneous, multisite, many single neuron recordings.
    Nicolelis MA; Ghazanfar AA; Faggin BM; Votaw S; Oliveira LM
    Neuron; 1997 Apr; 18(4):529-37. PubMed ID: 9136763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A technique for microiontophoretic study of single neurones in the behaving monkey.
    Perrett DI; Rolls ET
    J Neurosci Methods; 1985 Feb; 12(4):289-95. PubMed ID: 3921775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Hybrid Drive: a chronic implant device combining tetrode arrays with silicon probes for layer-resolved ensemble electrophysiology in freely moving mice.
    Guardamagna M; Eichler R; Pedrosa R; Aarts A; Meyer AF; Battaglia FP
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35421850
    [No Abstract]   [Full Text] [Related]  

  • 34. Investigating Neural Correlates of Behavior Through In Vivo Electrophysiology.
    Halladay LR
    Curr Protoc; 2023 May; 3(5):e769. PubMed ID: 37154436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.
    Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F
    J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anesthetized- and awake-patched whole-cell recordings in freely moving rats using UV-cured collar-based electrode stabilization.
    Lee D; Shtengel G; Osborne JE; Lee AK
    Nat Protoc; 2014 Dec; 9(12):2784-95. PubMed ID: 25375992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recordings of neural circuit activation in freely behaving animals.
    Herberholz J
    J Vis Exp; 2009 Jul; (29):. PubMed ID: 19625988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophysiological recordings from behaving animals--going beyond spikes.
    Chorev E; Epsztein J; Houweling AR; Lee AK; Brecht M
    Curr Opin Neurobiol; 2009 Oct; 19(5):513-9. PubMed ID: 19735997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring and tracking eye movements of a behaving archer fish by real-time stereo vision.
    Ben-Simon A; Ben-Shahar O; Segev R
    J Neurosci Methods; 2009 Nov; 184(2):235-43. PubMed ID: 19698749
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.