These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 2205485)

  • 1. Cancer risk assessment of 1,3-butadiene.
    Cote IL; Bayard SP
    Environ Health Perspect; 1990 Jun; 86():149-53. PubMed ID: 2205485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure and risk assessment of 1,3-butadiene in Japan.
    Higashino H; Mita K; Yoshikado H; Iwata M; Nakanishi J
    Chem Biol Interact; 2007 Mar; 166(1-3):52-62. PubMed ID: 17092494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-response implications of the University of Alabama study of lymphohematopoietic cancer among workers exposed to 1,3-butadiene and styrene in the synthetic rubber industry.
    Sielken RL; Valdez-Flores C
    Chem Biol Interact; 2001 Jun; 135-136():637-51. PubMed ID: 11397418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air toxics and health risks in California: the public health implications of outdoor concentrations.
    Morello-Frosch RA; Woodruff TJ; Axelrad DA; Caldwell JC
    Risk Anal; 2000 Apr; 20(2):273-91. PubMed ID: 10859786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating ambient concentration and cancer risk for 1,3-butadiene in Japan.
    Mita K; Higashino H; Yoshikado H; Nakanishi J
    Environ Sci; 2006; 13(1):1-13. PubMed ID: 16685248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a unit risk factor for 1,3-butadiene based on an updated carcinogenic toxicity assessment.
    Grant RL; Haney J; Curry AL; Honeycutt M
    Risk Anal; 2009 Dec; 29(12):1726-42. PubMed ID: 19878488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the potential risk to workers from exposure to 1,3-butadiene.
    Turnbull D; Rodricks JV; Brett SM
    Environ Health Perspect; 1990 Jun; 86():159-71. PubMed ID: 2205486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Industrial emissions of 1,3-butadiene.
    Mullins JA
    Environ Health Perspect; 1990 Jun; 86():9-10. PubMed ID: 2401277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal trend evaluation of ambient concentrations of 1,3-butadiene and chloroprene in Texas.
    Grant RL; Leopold V; McCant D; Honeycutt M
    Chem Biol Interact; 2007 Mar; 166(1-3):44-51. PubMed ID: 17011534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of health information to hazardous air pollutants modeled in EPA's Cumulative Exposure Project.
    Caldwell JC; Woodruff TJ; Morello-Frosch R; Axelrad DA
    Toxicol Ind Health; 1998; 14(3):429-54. PubMed ID: 9569448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industry efforts to weaken the EPA's classification of the carcinogenicity of 1,3-butadiene.
    Sass JB
    Int J Occup Environ Health; 2005; 11(4):378-83. PubMed ID: 16350472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotoxicity of 1,3-butadiene and its epoxy intermediates.
    Walker VE; Walker DM; Meng Q; McDonald JD; Scott BR; Seilkop SK; Claffey DJ; Upton PB; Powley MW; Swenberg JA; Henderson RF;
    Res Rep Health Eff Inst; 2009 Aug; (144):3-79. PubMed ID: 20017413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating cancer risk from outdoor concentrations of hazardous air pollutants in 1990.
    Woodruff TJ; Caldwell J; Cogliano VJ; Axelrad DA
    Environ Res; 2000 Mar; 82(3):194-206. PubMed ID: 10702327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving cancer dose-response characterization by using physiologically based pharmacokinetic modeling: an analysis of pooled data for acrylonitrile-induced brain tumors to assess cancer potency in the rat.
    Kirman CR; Hays SM; Kedderis GL; Gargas ML; Strother DE
    Risk Anal; 2000 Feb; 20(1):135-51. PubMed ID: 10795346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Considerations in deriving quantitative cancer criteria for inorganic arsenic exposure via inhalation.
    Lewis AS; Beyer LA; Zu K
    Environ Int; 2015 Jan; 74():258-73. PubMed ID: 25454243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-to-tumour risk assessment for 1,3-butadiene based on exposure of mice to low doses by inhalation.
    Dankovic DA; Smith RJ; Stayner LT; Bailer AJ
    IARC Sci Publ; 1993; (127):335-44. PubMed ID: 8070880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling population exposures to outdoor sources of hazardous air pollutants.
    Ozkaynak H; Palma T; Touma JS; Thurman J
    J Expo Sci Environ Epidemiol; 2008 Jan; 18(1):45-58. PubMed ID: 17878926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant shortcomings of the U.S. Environmental Protection Agency's latest draft risk characterization for dioxin-like compounds.
    Starr TB
    Toxicol Sci; 2001 Nov; 64(1):7-13. PubMed ID: 11606796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.