These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22054999)

  • 1. The quantitative analysis of fat and protein in meat by transmission infrared analysis.
    Mills BL; van de Voort FR; Kakuda Y
    Meat Sci; 1984; 11(4):253-62. PubMed ID: 22054999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mojonnier method as reference for infrared determination of fat in meat products.
    Mills BL; van de Voort FR; Usborne WR
    J Assoc Off Anal Chem; 1983 Jul; 66(4):1048-50. PubMed ID: 6885688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared estimation of fat, protein, and lactose in milk: evaluation of multispec instrument.
    Biggs DA
    J Assoc Off Anal Chem; 1979 Nov; 62(6):1202-7. PubMed ID: 521407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicomponent analysis of meat products by infrared spectrophotometry: collaborative study.
    Bjarnø OC; Arneth W; Noack W; Pfeiffer G
    J Assoc Off Anal Chem; 1982 May; 65(3):696-700. PubMed ID: 7096252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of video image analysis for quantitative measurement of visible fat and lean in meat: Part 1-boneless fresh and cured meats.
    Newman PB
    Meat Sci; 1984; 10(2):87-100. PubMed ID: 22056061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef.
    Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G
    Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Optimizing spectral region in using near-infrared spectroscopy for donkey milk analysis].
    Zheng LM; Zhang LD; Guo HY; Pang K; Zhang WJ; Ren FZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2224-7. PubMed ID: 18260400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the chemical composition of freeze dried ostrich meat with near infrared reflectance spectroscopy.
    Viljoen M; Hoffman LC; Brand TS
    Meat Sci; 2005 Feb; 69(2):255-61. PubMed ID: 22062816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application and recent development of research on near-infrared spectroscopy for meat quality evaluation].
    Xu X; Cheng F; Ying YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1876-80. PubMed ID: 19798962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicomponent analysis of meat products.
    Bjarnø OC
    J Assoc Off Anal Chem; 1981 Nov; 64(6):1392-6. PubMed ID: 7309659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid methods for determination of meat composition.
    McNeal JE
    J Assoc Off Anal Chem; 1987; 70(1):95-9. PubMed ID: 3558286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative aqueous ammonium ion analysis by transmission infrared spectroscopy.
    van de Voort FR; Mills BL; Paquette GA; Grunfeld E
    J Assoc Off Anal Chem; 1986; 69(6):924-8. PubMed ID: 3542955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of infrared milk analyzers: modified milk versus producer milk.
    Kaylegian KE; Houghton GE; Lynch JM; Fleming JR; Barbano DM
    J Dairy Sci; 2006 Aug; 89(8):2817-32. PubMed ID: 16840598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of preservatives on the accuracy of mid-infrared milk component testing.
    Barbano DM; Wojciechowski KL; Lynch JM
    J Dairy Sci; 2010 Dec; 93(12):6000-11. PubMed ID: 21094775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precalibration evaluation procedures for mid-infrared milk analyzers.
    Lynch JM; Barbano DM; Schweisthal M; Fleming JR
    J Dairy Sci; 2006 Jul; 89(7):2761-74. PubMed ID: 16772596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-infrared spectrometry of milk for dairy metabolomics: a comparison of two sampling techniques and effect of homogenization.
    Aernouts B; Polshin E; Saeys W; Lammertyn J
    Anal Chim Acta; 2011 Oct; 705(1-2):88-97. PubMed ID: 21962352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the number of observations used for Fourier transform infrared model calibration for bovine milk fat composition on the estimated genetic parameters of the predicted data.
    Rutten MJ; Bovenhuis H; van Arendonk JA
    J Dairy Sci; 2010 Oct; 93(10):4872-82. PubMed ID: 20855022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative methods for infrared analysis of fat in milk: interlaboratory study.
    Biggs DA; McKenna D
    J Assoc Off Anal Chem; 1989; 72(5):724-34. PubMed ID: 2808231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating fatty acid content in cow milk using mid-infrared spectrometry.
    Soyeurt H; Dardenne P; Dehareng F; Lognay G; Veselko D; Marlier M; Bertozzi C; Mayeres P; Gengler N
    J Dairy Sci; 2006 Sep; 89(9):3690-5. PubMed ID: 16899705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared spectroscopy technique for the nondestructive measurement of fat content in milk powder.
    Wu D; Feng S; He Y
    J Dairy Sci; 2007 Aug; 90(8):3613-9. PubMed ID: 17638971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.