BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 22055017)

  • 21. Dopamine in the nucleus accumbens core, but not shell, increases during signaled food reward and decreases during delayed extinction.
    Biesdorf C; Wang AL; Topic B; Petri D; Milani H; Huston JP; de Souza Silva MA
    Neurobiol Learn Mem; 2015 Sep; 123():125-39. PubMed ID: 26071677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task.
    Wassum KM; Ostlund SB; Maidment NT
    Biol Psychiatry; 2012 May; 71(10):846-54. PubMed ID: 22305286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Delays conferred by escalating costs modulate dopamine release to rewards but not their predictors.
    Wanat MJ; Kuhnen CM; Phillips PE
    J Neurosci; 2010 Sep; 30(36):12020-7. PubMed ID: 20826665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anticipation of Appetitive Operant Action Induces Sustained Dopamine Release in the Nucleus Accumbens.
    Goedhoop J; Arbab T; Willuhn I
    J Neurosci; 2023 May; 43(21):3922-3932. PubMed ID: 37185100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making.
    Mai B; Sommer S; Hauber W
    Int J Neuropsychopharmacol; 2015 Apr; 18(10):pyv043. PubMed ID: 25908669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phasic mesolimbic dopamine release tracks reward seeking during expression of Pavlovian-to-instrumental transfer.
    Wassum KM; Ostlund SB; Loewinger GC; Maidment NT
    Biol Psychiatry; 2013 Apr; 73(8):747-55. PubMed ID: 23374641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prior Exposure to Salient Win-Paired Cues in a Rat Gambling Task Increases Sensitivity to Cocaine Self-Administration and Suppresses Dopamine Efflux in Nucleus Accumbens: Support for the Reward Deficiency Hypothesis of Addiction.
    Ferland JN; Hynes TJ; Hounjet CD; Lindenbach D; Vonder Haar C; Adams WK; Phillips AG; Winstanley CA
    J Neurosci; 2019 Mar; 39(10):1842-1854. PubMed ID: 30626700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alterations in effort-related decision-making induced by stimulation of dopamine D
    Bryce CA; Floresco SB
    Psychopharmacology (Berl); 2019 Sep; 236(9):2699-2712. PubMed ID: 30972447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function.
    Singer BF; Guptaroy B; Austin CJ; Wohl I; Lovic V; Seiler JL; Vaughan RA; Gnegy ME; Robinson TE; Aragona BJ
    Eur J Neurosci; 2016 Mar; 43(5):662-70. PubMed ID: 26613374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orbitofrontal or accumbens dopamine depletion does not affect risk-based decision making in rats.
    Mai B; Hauber W
    Cogn Affect Behav Neurosci; 2015 Sep; 15(3):507-22. PubMed ID: 25860659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sex Differences in Behavioral Responding and Dopamine Release during Pavlovian Learning.
    Lefner MJ; Dejeux MI; Wanat MJ
    eNeuro; 2022; 9(2):. PubMed ID: 35264461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.
    Collins AL; Aitken TJ; Greenfield VY; Ostlund SB; Wassum KM
    Neuropsychopharmacology; 2016 Nov; 41(12):2830-2838. PubMed ID: 27240658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Risky decision-making predicts dopamine release dynamics in nucleus accumbens shell.
    Freels TG; Gabriel DBK; Lester DB; Simon NW
    Neuropsychopharmacology; 2020 Jan; 45(2):266-275. PubMed ID: 31546248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term.
    Hart AS; Rutledge RB; Glimcher PW; Phillips PE
    J Neurosci; 2014 Jan; 34(3):698-704. PubMed ID: 24431428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aversive stimuli differentially modulate real-time dopamine transmission dynamics within the nucleus accumbens core and shell.
    Badrinarayan A; Wescott SA; Vander Weele CM; Saunders BT; Couturier BE; Maren S; Aragona BJ
    J Neurosci; 2012 Nov; 32(45):15779-90. PubMed ID: 23136417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contributions of nucleus accumbens dopamine to cognitive flexibility.
    Radke AK; Kocharian A; Covey DP; Lovinger DM; Cheer JF; Mateo Y; Holmes A
    Eur J Neurosci; 2019 Aug; 50(3):2023-2035. PubMed ID: 30218623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phasic dopamine release induced by positive feedback predicts individual differences in reversal learning.
    Klanker M; Sandberg T; Joosten R; Willuhn I; Feenstra M; Denys D
    Neurobiol Learn Mem; 2015 Nov; 125():135-45. PubMed ID: 26343836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overriding phasic dopamine signals redirects action selection during risk/reward decision making.
    Stopper CM; Tse MTL; Montes DR; Wiedman CR; Floresco SB
    Neuron; 2014 Oct; 84(1):177-189. PubMed ID: 25220811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intact risk-based decision making in rats with prefrontal or accumbens dopamine depletion.
    Mai B; Hauber W
    Cogn Affect Behav Neurosci; 2012 Dec; 12(4):719-29. PubMed ID: 22923036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid dopamine dynamics in the accumbens core and shell: learning and action.
    Saddoris MP; Sugam JA; Cacciapaglia F; Carelli RM
    Front Biosci (Elite Ed); 2013 Jan; 5(1):273-88. PubMed ID: 23276989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.