BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22055313)

  • 1. Enrofloxacin oxidative degradation facilitated by metal oxide nanoparticles.
    Fink L; Dror I; Berkowitz B
    Chemosphere; 2012 Jan; 86(2):144-9. PubMed ID: 22055313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species.
    Dror I; Fink L; Weiner L; Berkowitz B
    Chemosphere; 2020 Nov; 258():127266. PubMed ID: 32535443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species production by catechol stabilized copper nanoparticles.
    Chen C; Ahmed I; Fruk L
    Nanoscale; 2013 Dec; 5(23):11610-4. PubMed ID: 24121728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance.
    Li M; Yin JJ; Wamer WG; Lo YM
    J Food Drug Anal; 2014 Mar; 22(1):76-85. PubMed ID: 24673905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization by electron spin resonance spectroscopy of reactive oxygen species generated by titanium dioxide and hydrogen peroxide.
    Lee MC; Yoshino F; Shoji H; Takahashi S; Todoki K; Shimada S; Kuse-Barouch K
    J Dent Res; 2005 Feb; 84(2):178-82. PubMed ID: 15668337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu(II)-catalyzed degradation of ampicillin: effect of pH and dissolved oxygen.
    Guo Y; Tsang DCW; Zhang X; Yang X
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4279-4288. PubMed ID: 29178018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation into copper catalyzed D-penicillamine oxidation and subsequent hydrogen peroxide generation.
    Gupte A; Mumper RJ
    J Inorg Biochem; 2007 Apr; 101(4):594-602. PubMed ID: 17275091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials Marbofloxacin and Enrofloxacin.
    Sturini M; Speltini A; Maraschi F; Profumo A; Pretali L; Fasani E; Albini A
    Chemosphere; 2012 Jan; 86(2):130-7. PubMed ID: 22051342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species.
    Wang G; Jin W; Qasim AM; Gao A; Peng X; Li W; Feng H; Chu PK
    Biomaterials; 2017 Apr; 124():25-34. PubMed ID: 28182874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad-spectrum antimicrobial photocatalysis mediated by titanium dioxide and UVA is potentiated by addition of bromide ion via formation of hypobromite.
    Wu X; Huang YY; Kushida Y; Bhayana B; Hamblin MR
    Free Radic Biol Med; 2016 Jun; 95():74-81. PubMed ID: 27012419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution chemistry of copper(II)-gentamicin complexes: relevance to metal-related aminoglycoside toxicity.
    Lesniak W; Harris WR; Kravitz JY; Schacht J; Pecoraro VL
    Inorg Chem; 2003 Mar; 42(5):1420-9. PubMed ID: 12611506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of antibacterial activity and toxic metal removal of chemically synthesized magnetic iron oxide titanium coated nanoparticles and application in bacterial treatment.
    Abdulhady YAM; El-Shazly MM; El-Kased RF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Feb; 53(3):205-212. PubMed ID: 29148917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles.
    He W; Zhou YT; Wamer WG; Boudreau MD; Yin JJ
    Biomaterials; 2012 Oct; 33(30):7547-55. PubMed ID: 22809647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic oxidation of propylene with molecular oxygen over highly dispersed titanium, vanadium, and chromium oxides on silica.
    Amano F; Yamaguchi T; Tanaka T
    J Phys Chem B; 2006 Jan; 110(1):281-8. PubMed ID: 16471534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts.
    Kim JK; Metcalfe IS
    Chemosphere; 2007 Oct; 69(5):689-96. PubMed ID: 17604820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically directed assembly of photoactive metal oxide nanoparticle heterojunctions via the copper-catalyzed azide-alkyne cycloaddition "click" reaction.
    Cardiel AC; Benson MC; Bishop LM; Louis KM; Yeager JC; Tan Y; Hamers RJ
    ACS Nano; 2012 Jan; 6(1):310-8. PubMed ID: 22196212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.
    Sankar R; Maheswari R; Karthik S; Shivashangari KS; Ravikumar V
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():234-9. PubMed ID: 25280701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation towards enrofloxacin degradation over nanoscale zero-valent copper: mechanism and products.
    Gong Z; Xie J; Liu J; Liu T; Chen J; Li J; Gan J
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38700-38712. PubMed ID: 36585582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications.
    Wen T; He W; Chong Y; Liu Y; Yin JJ; Wu X
    Phys Chem Chem Phys; 2015 Oct; 17(38):24937-43. PubMed ID: 26344402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild Synthesis of Copper Nanoparticles with Enhanced Oxidative Stability and Their Application in Antibacterial Films.
    Tang L; Zhu L; Tang F; Yao C; Wang J; Li L
    Langmuir; 2018 Dec; 34(48):14570-14576. PubMed ID: 30423251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.