BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 22055344)

  • 1. Autophagy proteins regulate the secretory component of osteoclastic bone resorption.
    DeSelm CJ; Miller BC; Zou W; Beatty WL; van Meel E; Takahata Y; Klumperman J; Tooze SA; Teitelbaum SL; Virgin HW
    Dev Cell; 2011 Nov; 21(5):966-74. PubMed ID: 22055344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aesculetin Inhibits Osteoclastic Bone Resorption through Blocking Ruffled Border Formation and Lysosomal Trafficking.
    Na W; Lee EJ; Kang MK; Kim YH; Kim DY; Oh H; Kim SI; Oh SY; Kang YH
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33203061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K.
    Ohmae S; Noma N; Toyomoto M; Shinohara M; Takeiri M; Fuji H; Takemoto K; Iwaisako K; Fujita T; Takeda N; Kawatani M; Aoyama M; Hagiwara M; Ishihama Y; Asagiri M
    Sci Rep; 2017 Mar; 7():41710. PubMed ID: 28300073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rab GTPases in Osteoclastic Bone Resorption and Autophagy.
    Roy M; Roux S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33081155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the dynein-dynactin complex unveils motor-specific functions in osteoclast formation and bone resorption.
    Ng PY; Cheng TS; Zhao H; Ye S; Sm Ang E; Khor EC; Feng HT; Xu J; Zheng MH; Pavlos NJ
    J Bone Miner Res; 2013 Jan; 28(1):119-34. PubMed ID: 22887640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the ATG4-LC3 pathway suppressed osteoclast maturation.
    Hiura F; Kawabata Y; Aoki T; Mizokami A; Jimi E
    Biochem Biophys Res Commun; 2022 Dec; 632():40-47. PubMed ID: 36198202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts.
    Ng PY; Ribet ABP; Guo Q; Mullin BH; Tan JWY; Landao-Bassonga E; Stephens S; Chen K; Yuan J; Abudulai L; Bollen M; Nguyen ETTT; Kular J; Papadimitriou JM; Søe K; Teasdale RD; Xu J; Parton RG; Takayanagi H; Pavlos NJ
    Nat Commun; 2023 Feb; 14(1):906. PubMed ID: 36810735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption.
    Yang DQ; Feng S; Chen W; Zhao H; Paulson C; Li YP
    J Bone Miner Res; 2012 Aug; 27(8):1695-707. PubMed ID: 22467241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RUFY4 deletion prevents pathological bone loss by blocking endo-lysosomal trafficking of osteoclasts.
    Kim M; Park JH; Go M; Lee N; Seo J; Lee H; Kim D; Ha H; Kim T; Jeong MS; Kim S; Kim T; Kim HS; Kang D; Shim H; Lee SY
    Bone Res; 2024 May; 12(1):29. PubMed ID: 38744829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The osteoclast and its unique cytoskeleton.
    Teitelbaum SL
    Ann N Y Acad Sci; 2011 Dec; 1240():14-7. PubMed ID: 22172034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased synthesis and specific localization of a major lysosomal membrane sialoglycoprotein (LGP107) at the ruffled border membrane of active osteoclasts.
    Akamine A; Tsukuba T; Kimura R; Maeda K; Tanaka Y; Kato K; Yamamoto K
    Histochemistry; 1993 Aug; 100(2):101-8. PubMed ID: 8244761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The resorptive apparatus of osteoclasts supports lysosomotropism and increases potency of basic versus non-basic inhibitors of cathepsin K.
    Fuller K; Lindstrom E; Edlund M; Henderson I; Grabowska U; Szewczyk KA; Moss R; Samuelsson B; Chambers TJ
    Bone; 2010 May; 46(5):1400-7. PubMed ID: 20097319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A difference in the enzyme contents of resorption lacunae and secondary lysosomes of osteoclasts.
    Karhukorpi EK; Vihko P; Väänänen K
    Acta Histochem; 1992; 92(1):1-11. PubMed ID: 1580139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase C-delta deficiency perturbs bone homeostasis by selective uncoupling of cathepsin K secretion and ruffled border formation in osteoclasts.
    Cremasco V; Decker CE; Stumpo D; Blackshear PJ; Nakayama KI; Nakayama K; Lupu TS; Graham DB; Novack DV; Faccio R
    J Bone Miner Res; 2012 Dec; 27(12):2452-63. PubMed ID: 22806935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. oxLDL inhibits differentiation and functional activity of osteoclasts via scavenger receptor-A mediated autophagy and cathepsin K secretion.
    Dawodu D; Patecki M; Hegermann J; Dumler I; Haller H; Kiyan Y
    Sci Rep; 2018 Aug; 8(1):11604. PubMed ID: 30072716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hem1 is essential for ruffled border formation in osteoclasts and efficient bone resorption.
    Werbenko E; de Gorter DJJ; Kleimann S; Beckmann D; Waltereit-Kracke V; Reinhardt J; Geers F; Paruzel P; Hansen U; Pap T; Stradal TEB; Dankbar B
    Sci Rep; 2024 Apr; 14(1):8109. PubMed ID: 38582757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. V-ATPase a3 Subunit in Secretory Lysosome Trafficking in Osteoclasts.
    Nakanishi-Matsui M; Matsumoto N
    Biol Pharm Bull; 2022; 45(10):1426-1431. PubMed ID: 36184499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological sequestration of intracellular cholesterol in late endosomes disrupts ruffled border formation in osteoclasts.
    Zhao H; Väänänen HK
    J Bone Miner Res; 2006 Mar; 21(3):456-65. PubMed ID: 16491294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border.
    Baron R; Neff L; Louvard D; Courtoy PJ
    J Cell Biol; 1985 Dec; 101(6):2210-22. PubMed ID: 3905822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget's disease-like disorder in mice.
    Daroszewska A; van 't Hof RJ; Rojas JA; Layfield R; Landao-Basonga E; Rose L; Rose K; Ralston SH
    Hum Mol Genet; 2011 Jul; 20(14):2734-44. PubMed ID: 21515589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.