These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 22055460)
1. TSC1/TSC2 inactivation inhibits AKT through mTORC1-dependent up-regulation of STAT3-PTEN cascade. Zha X; Hu Z; He S; Wang F; Shen H; Zhang H Cancer Lett; 2011 Dec; 313(2):211-7. PubMed ID: 22055460 [TBL] [Abstract][Full Text] [Related]
2. Livers with constitutive mTORC1 activity resist steatosis independent of feedback suppression of Akt. Kenerson HL; Subramanian S; McIntyre R; Kazami M; Yeung RS PLoS One; 2015; 10(2):e0117000. PubMed ID: 25646773 [TBL] [Abstract][Full Text] [Related]
3. Differential IKK/NF-κB Activity Is Mediated by TSC2 through mTORC1 in PTEN-Null Prostate Cancer and Tuberous Sclerosis Complex Tumor Cells. Gao Y; Gartenhaus RB; Lapidus RG; Hussain A; Zhang Y; Wang X; Dan HC Mol Cancer Res; 2015 Dec; 13(12):1602-14. PubMed ID: 26374334 [TBL] [Abstract][Full Text] [Related]
5. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish. Kim SH; Kowalski ML; Carson RP; Bridges LR; Ess KC Dis Model Mech; 2013 Jul; 6(4):925-33. PubMed ID: 23580196 [TBL] [Abstract][Full Text] [Related]
6. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. Zhang H; Bajraszewski N; Wu E; Wang H; Moseman AP; Dabora SL; Griffin JD; Kwiatkowski DJ J Clin Invest; 2007 Mar; 117(3):730-8. PubMed ID: 17290308 [TBL] [Abstract][Full Text] [Related]
7. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. Zhang H; Cicchetti G; Onda H; Koon HB; Asrican K; Bajraszewski N; Vazquez F; Carpenter CL; Kwiatkowski DJ J Clin Invest; 2003 Oct; 112(8):1223-33. PubMed ID: 14561707 [TBL] [Abstract][Full Text] [Related]
8. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth. Zha X; Hu Z; Ji S; Jin F; Jiang K; Li C; Zhao P; Tu Z; Chen X; Di L; Zhou H; Zhang H Cancer Lett; 2015 Apr; 359(1):97-106. PubMed ID: 25578782 [TBL] [Abstract][Full Text] [Related]
9. TSC1 controls distribution of actin fibers through its effect on function of Rho family of small GTPases and regulates cell migration and polarity. Ohsawa M; Kobayashi T; Okura H; Igarashi T; Mizuguchi M; Hino O PLoS One; 2013; 8(1):e54503. PubMed ID: 23355874 [TBL] [Abstract][Full Text] [Related]
10. A complex interplay between Akt, TSC2 and the two mTOR complexes. Huang J; Manning BD Biochem Soc Trans; 2009 Feb; 37(Pt 1):217-22. PubMed ID: 19143635 [TBL] [Abstract][Full Text] [Related]
11. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Feng Z; Hu W; de Stanchina E; Teresky AK; Jin S; Lowe S; Levine AJ Cancer Res; 2007 Apr; 67(7):3043-53. PubMed ID: 17409411 [TBL] [Abstract][Full Text] [Related]
12. Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1. Zhou J; Brugarolas J; Parada LF Hum Mol Genet; 2009 Nov; 18(22):4428-41. PubMed ID: 19692352 [TBL] [Abstract][Full Text] [Related]
13. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Han EK; Leverson JD; McGonigal T; Shah OJ; Woods KW; Hunter T; Giranda VL; Luo Y Oncogene; 2007 Aug; 26(38):5655-61. PubMed ID: 17334390 [TBL] [Abstract][Full Text] [Related]
14. Stromal liver kinase B1 [STK11] signaling loss induces oviductal adenomas and endometrial cancer by activating mammalian Target of Rapamycin Complex 1. Tanwar PS; Kaneko-Tarui T; Zhang L; Tanaka Y; Crum CP; Teixeira JM PLoS Genet; 2012; 8(8):e1002906. PubMed ID: 22916036 [TBL] [Abstract][Full Text] [Related]
15. Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Martelli AM; Evangelisti C; Chappell W; Abrams SL; Bäsecke J; Stivala F; Donia M; Fagone P; Nicoletti F; Libra M; Ruvolo V; Ruvolo P; Kempf CR; Steelman LS; McCubrey JA Leukemia; 2011 Jul; 25(7):1064-79. PubMed ID: 21436840 [TBL] [Abstract][Full Text] [Related]
16. Unrestrained mammalian target of rapamycin complexes 1 and 2 increase expression of phosphatase and tensin homolog deleted on chromosome 10 to regulate phosphorylation of Akt kinase. Das F; Ghosh-Choudhury N; Dey N; Mandal CC; Mahimainathan L; Kasinath BS; Abboud HE; Choudhury GG J Biol Chem; 2012 Feb; 287(6):3808-22. PubMed ID: 22184110 [TBL] [Abstract][Full Text] [Related]
17. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Iliopoulos D; Jaeger SA; Hirsch HA; Bulyk ML; Struhl K Mol Cell; 2010 Aug; 39(4):493-506. PubMed ID: 20797623 [TBL] [Abstract][Full Text] [Related]
19. Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Lacher MD; Pincheira R; Zhu Z; Camoretti-Mercado B; Matli M; Warren RS; Castro AF Oncogene; 2010 Dec; 29(50):6543-56. PubMed ID: 20818424 [TBL] [Abstract][Full Text] [Related]
20. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Astle MV; Hannan KM; Ng PY; Lee RS; George AJ; Hsu AK; Haupt Y; Hannan RD; Pearson RB Oncogene; 2012 Apr; 31(15):1949-62. PubMed ID: 21909130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]