These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 22055520)
1. Study of the interdependency of the data sampling ratio with retention time alignment and principal component analysis for gas chromatography. Nadeau JS; Wilson RB; Hoggard JC; Wright BW; Synovec RE J Chromatogr A; 2011 Dec; 1218(50):9091-101. PubMed ID: 22055520 [TBL] [Abstract][Full Text] [Related]
2. Classification of high-speed gas chromatography-mass spectrometry data by principal component analysis coupled with piecewise alignment and feature selection. Watson NE; Vanwingerden MM; Pierce KM; Wright BW; Synovec RE J Chromatogr A; 2006 Sep; 1129(1):111-8. PubMed ID: 16860329 [TBL] [Abstract][Full Text] [Related]
3. Classification of gasoline data obtained by gas chromatography using a piecewise alignment algorithm combined with feature selection and principal component analysis. Pierce KM; Hope JL; Johnson KJ; Wright BW; Synovec RE J Chromatogr A; 2005 Nov; 1096(1-2):101-10. PubMed ID: 16301073 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive two-dimensional retention time alignment algorithm to enhance chemometric analysis of comprehensive two-dimensional separation data. Pierce KM; Wood LF; Wright BW; Synovec RE Anal Chem; 2005 Dec; 77(23):7735-43. PubMed ID: 16316183 [TBL] [Abstract][Full Text] [Related]
5. Chemometric analysis of gas chromatography-mass spectrometry data using fast retention time alignment via a total ion current shift function. Nadeau JS; Wright BW; Synovec RE Talanta; 2010 Apr; 81(1-2):120-8. PubMed ID: 20188897 [TBL] [Abstract][Full Text] [Related]
6. High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis. Johnson KJ; Wright BW; Jarman KH; Synovec RE J Chromatogr A; 2003 May; 996(1-2):141-55. PubMed ID: 12830915 [TBL] [Abstract][Full Text] [Related]
7. Unsupervised parameter optimization for automated retention time alignment of severely shifted gas chromatographic data using the piecewise alignment algorithm. Pierce KM; Wright BW; Synovec RE J Chromatogr A; 2007 Feb; 1141(1):106-16. PubMed ID: 17174960 [TBL] [Abstract][Full Text] [Related]
8. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening. Wilson RB; Siegler WC; Hoggard JC; Fitz BD; Nadeau JS; Synovec RE J Chromatogr A; 2011 May; 1218(21):3130-9. PubMed ID: 21255787 [TBL] [Abstract][Full Text] [Related]
9. Utilizing a constant peak width transform for isothermal gas chromatography. Nadeau JS; Wilson RB; Fitz BD; Reed JT; Synovec RE J Chromatogr A; 2011 Jun; 1218(23):3718-24. PubMed ID: 21536294 [TBL] [Abstract][Full Text] [Related]
10. Optimizing column-to-column retention time alignment in high-speed gas chromatography by combining retention time locking and correlation optimized warping. Halvorsen RC; Trinklein TJ; Warren CG; Rogan RD; Synovec RE Talanta; 2023 Mar; 254():124173. PubMed ID: 36512972 [TBL] [Abstract][Full Text] [Related]
12. A new algorithm of piecewise automated beam search for peak alignment of chromatographic fingerprints. Yao W; Yin X; Hu Y J Chromatogr A; 2007 Aug; 1160(1-2):254-62. PubMed ID: 17560584 [TBL] [Abstract][Full Text] [Related]
13. icoshift: An effective tool for the alignment of chromatographic data. Tomasi G; Savorani F; Engelsen SB J Chromatogr A; 2011 Oct; 1218(43):7832-40. PubMed ID: 21930276 [TBL] [Abstract][Full Text] [Related]
14. Analysis of bacteria by pyrolysis gas chromatography-differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Prasad S; Pierce KM; Schmidt H; Rao JV; Güth R; Bader S; Synovec RE; Smith GB; Eiceman GA Analyst; 2007 Oct; 132(10):1031-9. PubMed ID: 17893807 [TBL] [Abstract][Full Text] [Related]
15. Chemometric treatment of vanillin fingerprint chromatograms. Effect of different signal alignments on principal component analysis plots. van Nederkassel AM; Xu CJ; Lancelin P; Sarraf M; Mackenzie DA; Walton NJ; Bensaid F; Lees M; Martin GJ; Desmurs JR; Massart DL; Smeyers-Verbeke J; Vander Heyden Y J Chromatogr A; 2006 Jul; 1120(1-2):291-8. PubMed ID: 16364334 [TBL] [Abstract][Full Text] [Related]
16. Principal component score modeling for the rapid description of chromatographic separations. Edwards-Parton S; Thornhill NF; Bracewell DG; Liddell JM; Titchener-Hooker NJ Biotechnol Prog; 2008; 24(1):202-8. PubMed ID: 18193884 [TBL] [Abstract][Full Text] [Related]
17. Chemometric analysis of diesel fuel for forensic and environmental applications. Hupp AM; Marshall LJ; Campbell DI; Smith RW; McGuffin VL Anal Chim Acta; 2008 Jan; 606(2):159-71. PubMed ID: 18082647 [TBL] [Abstract][Full Text] [Related]
18. Comparative multiple quantitative structure-retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques. Qin LT; Liu SS; Liu HL; Tong J J Chromatogr A; 2009 Jul; 1216(27):5302-12. PubMed ID: 19486989 [TBL] [Abstract][Full Text] [Related]
19. Impact of data bin size on the classification of diesel fuels using comprehensive two-dimensional gas chromatography with principal component analysis. Sudol PE; Gough DV; Prebihalo SE; Synovec RE Talanta; 2020 Jan; 206():120239. PubMed ID: 31514866 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive analysis of chromatographic data by using PARAFAC2 and principal components analysis. Amigo JM; Popielarz MJ; Callejón RM; Morales ML; Troncoso AM; Petersen MA; Toldam-Andersen TB J Chromatogr A; 2010 Jun; 1217(26):4422-9. PubMed ID: 20462590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]