BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 2205568)

  • 21. [The effect of glucose on the fatty acid level in Saccharomyces cerevisiae and Schwanniomyces occidentalis cells].
    Hudz' SP; Kolisnyk IaI
    Mikrobiol Z; 2000; 62(2):11-8. PubMed ID: 10872282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt-induced lipid changes in Catharanthus roseus cultured cell suspensions.
    Elkahoui S; Smaoui A; Zarrouk M; Ghrir R; Limam F
    Phytochemistry; 2004 Jul; 65(13):1911-7. PubMed ID: 15279997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid nutrition of Saccharomyces cerevisiae in winemaking.
    Belviso S; Bardi L; Bartolini AB; Marzona M
    Can J Microbiol; 2004 Sep; 50(9):669-74. PubMed ID: 15644919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sterol-content lowering action of o-chlorobenzylchloride in yeast.
    Ariga N; Katsuki H
    J Biochem; 1980 Jul; 88(1):97-102. PubMed ID: 6251039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of sulfur dioxide on lichen lipids and fatty acids.
    Bychek-Guschina IA; Kotlova ER; Heipieper H
    Biochemistry (Mosc); 1999 Jan; 64(1):61-5. PubMed ID: 9986914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The phosphatidylcholine to phosphatidylethanolamine ratio of Saccharomyces cerevisiae varies with the growth phase.
    Janssen MJ; Koorengevel MC; de Kruijff B; de Kroon AI
    Yeast; 2000 May; 16(7):641-50. PubMed ID: 10806426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethanol adaptation mechanisms in Saccharomyces cerevisiae.
    Alexandre H; Rousseaux I; Charpentier C
    Biotechnol Appl Biochem; 1994 Oct; 20(2):173-83. PubMed ID: 7986377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipidome profiling of Saccharomyces cerevisiae reveals pitching rate-dependent fermentative performance.
    Tian HC; Zhou J; Qiao B; Liu Y; Xia JM; Yuan YJ
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1507-16. PubMed ID: 20445974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids.
    Pineau L; Colas J; Dupont S; Beney L; Fleurat-Lessard P; Berjeaud JM; Bergès T; Ferreira T
    Traffic; 2009 Jun; 10(6):673-90. PubMed ID: 19302420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae.
    Sharma SC
    FEMS Yeast Res; 2006 Nov; 6(7):1047-51. PubMed ID: 17042754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sterol and phospholipid acyl chain alterations in Saccharomyces cerevisiae secretion mutants as a function of temperature stress.
    Low C; Parks LW
    Lipids; 1987 Oct; 22(10):715-20. PubMed ID: 3323755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential adaptation of membranes of two osmotolerant fungi, Aspergillus chevalieri and Penicillium expansum to high sucrose concentrations.
    Hefnawy MA; Abou-Zeid AM
    Acta Microbiol Pol; 2003; 52(1):53-64. PubMed ID: 12916728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384.
    Alvarez-Ordóñez A; Fernández A; López M; Bernardo A
    Food Microbiol; 2009 May; 26(3):347-53. PubMed ID: 19269580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.
    Desfougères T; Ferreira T; Bergès T; Régnacq M
    Biochem J; 2008 Jan; 409(1):299-309. PubMed ID: 17803462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification.
    Fernandes AR; Sá-Correia I
    Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced phospholipase B activity and alteration of phospholipids and neutral lipids in Saccharomyces cerevisiae exposed to N-nitrosonornicotine.
    Vijayaraj P; Sabarirajan J; Nachiappan V
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):567-77. PubMed ID: 21046464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity.
    Mannazzu I; Angelozzi D; Belviso S; Budroni M; Farris GA; Goffrini P; Lodi T; Marzona M; Bardi L
    Int J Food Microbiol; 2008 Jan; 121(1):84-91. PubMed ID: 18055051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sterol uptake by anaerobically grown Saccharomyces cerevisiae.
    Youings A; Rose AH
    Yeast; 1989 Apr; 5 Spec No():S459-63. PubMed ID: 2665374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid metabolism in fungi.
    Chopra A; Khuller GK
    Crit Rev Microbiol; 1984; 11(3):209-71. PubMed ID: 6150809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Changes in lipid composition and respiratory activity of wheat roots treated with inhibitor of phosphoinositide cycle of lithium ions].
    Alekseeva VIa; Gordon LKh; Nikolaev BA; Lygin AV
    Tsitologiia; 2002; 44(4):350-6. PubMed ID: 12149778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.