These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 22055868)

  • 1. Structure of beef Longissimus dorsi muscle frozen at various temperatures: Part 2-ultrastructure of muscles frozen at -10, -22, -33, -78 and -115°C.
    Rahelić S; Gawwad AH; Puač S
    Meat Sci; 1985; 14(2):73-81. PubMed ID: 22055868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of beef Longissimus dorsi muscle frozen at various temperatures: Part 1-histological changes in muscle frozen at -10, -22, -33, -78, -115 and -196°C.
    Rahelić S; Puač S; Gawwad AH
    Meat Sci; 1985; 14(2):63-72. PubMed ID: 22055867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Definition of the optimum freezing rate-1. Investigation of structure and ultrastructure of beef M. longissimus dorsi frozen at different freezing rates.
    Grujić R; Petrović L; Pikula B; Amidžić L
    Meat Sci; 1993; 33(3):301-18. PubMed ID: 22060149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Influence of below-freezing temperatures on the rate of post-mortem metabolism and the water-holding capacity in prerigor frozen beef muscles (author's transl)].
    Fischer C; Honikel KO; Hamm R
    Z Lebensm Unters Forsch; 1980 Sep; 171(3):200-5. PubMed ID: 7424171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conventional freezing plus high pressure-low temperature treatment: Physical properties, microbial quality and storage stability of beef meat.
    Fernández PP; Sanz PD; Molina-García AD; Otero L; Guignon B; Vaudagna SR
    Meat Sci; 2007 Dec; 77(4):616-25. PubMed ID: 22061950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of freezing on sensory quality, shear force and water loss in beef M. longissimus dorsi.
    Lagerstedt A; Enfält L; Johansson L; Lundström K
    Meat Sci; 2008 Oct; 80(2):457-61. PubMed ID: 22063353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contracting muscle: a challenge for freeze-substitution and low temperature embedding.
    Edelmann L
    Scanning Microsc Suppl; 1989; 3():241-51; discussion 251-2. PubMed ID: 2616954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: effect of muscle type, premincing, and packaging.
    Estévez M; Ventanas S; Heinonen M; Puolanne E
    J Agric Food Chem; 2011 May; 59(10):5435-43. PubMed ID: 21506554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-mortem electrical stimulation and high temperature ageing of hot-deboned beef.
    Babiker SA; Lawrie RA
    Meat Sci; 1983 Jan; 8(1):1-20. PubMed ID: 22055402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Definition of the optimal freezing rate-2. Investigation of the physico-chemical properties of beef M. longissimus dorsi frozen at different freezing rates.
    Petrović L; Grujić R; Petrović M
    Meat Sci; 1993; 33(3):319-31. PubMed ID: 22060150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef.
    Farouk MM; Wieliczko KJ; Merts I
    Meat Sci; 2004 Jan; 66(1):171-9. PubMed ID: 22063945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison of postmortal changes in the ultrastructure of the masseter muscle and the longissimus dorsi muscle in pigs with PSE-meat].
    Bergmann V
    Arch Exp Veterinarmed; 1975; 29(5):717-33. PubMed ID: 1230105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High pressure/thermal treatment effects on the texture of beef muscle.
    Ma HJ; Ledward DA
    Meat Sci; 2004 Nov; 68(3):347-55. PubMed ID: 22062402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastography of beef muscle.
    Ophir J; Miller RK; Ponnekanti H; Cespedes I; Whittaker AD
    Meat Sci; 1994; 36(1-2):239-50. PubMed ID: 22061462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cooling and freezing of minced pre-rigor muscle on the breakdown of ATP and glycogen.
    Honikel KO; Hamm R
    Meat Sci; 1978 Jul; 2(3):181-8. PubMed ID: 22055049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in water-holding capacity due to changes in the fibre diameter, sarcomere length and connective tissue morphology of some beef muscles under acidic conditions below the ultimate pH.
    Rao MV; Gault NF; Kennedy S
    Meat Sci; 1989; 26(1):19-37. PubMed ID: 22054774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic changes involved in water holding capacity of frozen bovine longissimus dorsi muscles based on DIA strategy.
    Qian S; Li X; Liu C; Zhang C; Blecker C
    J Food Biochem; 2022 Oct; 46(10):e14330. PubMed ID: 35848392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beef longissimus lumborum, biceps femoris, and deep pectoralis Warner-Bratzler shear force is affected differently by endpoint temperature, cooking method, and USDA quality grade.
    Obuz E; Dikeman ME; Grobbel JP; Stephens JW; Loughin TM
    Meat Sci; 2004 Oct; 68(2):243-8. PubMed ID: 22062233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological changes in cooked longissimus dorsi muscle of pig, buffalo, sheep, goat and poultry.
    Kumar YP; Mishra DS; Prakash P
    Anat Anz; 1978; 143(2):145-51. PubMed ID: 646123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-slaughter influences on the formation of metyyoglobin in beef muscles.
    Ledward DA
    Meat Sci; 1985; 15(3):149-71. PubMed ID: 22054503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.