These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 22056344)
1. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography. Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344 [TBL] [Abstract][Full Text] [Related]
2. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
3. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. Hou G; Cui Q J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase. Wiersma-Koch H; Sunden F; Herschlag D Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692 [TBL] [Abstract][Full Text] [Related]
6. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
7. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily. Lassila JK; Herschlag D Biochemistry; 2008 Dec; 47(48):12853-9. PubMed ID: 18975918 [TBL] [Abstract][Full Text] [Related]
8. Theoretical study of phosphodiester hydrolysis in nucleotide pyrophosphatase/phosphodiesterase. Environmental effects on the reaction mechanism. López-Canut V; Roca M; Bertrán J; Moliner V; Tuñón I J Am Chem Soc; 2010 May; 132(20):6955-63. PubMed ID: 20429564 [TBL] [Abstract][Full Text] [Related]
9. The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. Davies DR; Hol WG FEBS Lett; 2004 Nov; 577(3):315-21. PubMed ID: 15556602 [TBL] [Abstract][Full Text] [Related]
10. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases. Koutsioulis D; Lyskowski A; Mäki S; Guthrie E; Feller G; Bouriotis V; Heikinheimo P Protein Sci; 2010 Jan; 19(1):75-84. PubMed ID: 19916164 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily. Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607 [TBL] [Abstract][Full Text] [Related]
12. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II. Vogel A; Schilling O; Meyer-Klaucke W Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536 [TBL] [Abstract][Full Text] [Related]
13. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J; Stieglitz KA; Kantrowitz ER Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627 [TBL] [Abstract][Full Text] [Related]
14. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum. Jonas S; van Loo B; Hyvönen M; Hollfelder F J Mol Biol; 2008 Dec; 384(1):120-36. PubMed ID: 18793651 [TBL] [Abstract][Full Text] [Related]
15. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. Holtz KM; Kantrowitz ER FEBS Lett; 1999 Nov; 462(1-2):7-11. PubMed ID: 10580082 [TBL] [Abstract][Full Text] [Related]
16. Structural snapshots of the catalytic cycle of the phosphodiesterase Autotaxin. Hausmann J; Keune WJ; Hipgrave Ederveen AL; van Zeijl L; Joosten RP; Perrakis A J Struct Biol; 2016 Aug; 195(2):199-206. PubMed ID: 27268273 [TBL] [Abstract][Full Text] [Related]
17. Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. Zalatan JG; Fenn TD; Herschlag D J Mol Biol; 2008 Dec; 384(5):1174-89. PubMed ID: 18851975 [TBL] [Abstract][Full Text] [Related]
18. A model of the transition state in the alkaline phosphatase reaction. Holtz KM; Stec B; Kantrowitz ER J Biol Chem; 1999 Mar; 274(13):8351-4. PubMed ID: 10085061 [TBL] [Abstract][Full Text] [Related]
19. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B; Holtz KM; Kantrowitz ER J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454 [TBL] [Abstract][Full Text] [Related]
20. Tungstate as a Transition State Analog for Catalysis by Alkaline Phosphatase. Peck A; Sunden F; Andrews LD; Pande VS; Herschlag D J Mol Biol; 2016 Jul; 428(13):2758-68. PubMed ID: 27189921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]