BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22056482)

  • 1. Lectin-induced activation of plasma membrane NADPH oxidase in cholesterol-depleted human neutrophils.
    Gorudko IV; Mukhortava AV; Caraher B; Ren M; Cherenkevich SN; Kelly GM; Timoshenko AV
    Arch Biochem Biophys; 2011 Dec; 516(2):173-81. PubMed ID: 22056482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The presence of membrane Proteinase 3 in neutrophil lipid rafts and its colocalization with FcgammaRIIIb and cytochrome b558.
    David A; Fridlich R; Aviram I
    Exp Cell Res; 2005 Aug; 308(1):156-65. PubMed ID: 15916759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in membrane cholesterol cause mobilization of lipid rafts from specific granules and prime human neutrophils for enhanced adherence-dependent oxidant production.
    Solomkin JS; Robinson CT; Cave CM; Ehmer B; Lentsch AB
    Shock; 2007 Sep; 28(3):334-8. PubMed ID: 17545945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstituted high-density lipoprotein suppresses leukocyte NADPH oxidase activation by disrupting lipid rafts.
    Peshavariya H; Dusting GJ; Di Bartolo B; Rye KA; Barter PJ; Jiang F
    Free Radic Res; 2009 Aug; 43(8):772-82. PubMed ID: 19521892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncompetitive inhibition of superoxide generation by a synthetic peptide corresponding to a predicted NADPH binding site in gp91-phox, a component of the phagocyte respiratory oxidase.
    Tsuchiya T; Imajoh-Ohmi S; Nunoi H; Kanegasaki S
    Biochem Biophys Res Commun; 1999 Apr; 257(1):124-8. PubMed ID: 10092521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody.
    Campion Y; Paclet MH; Jesaitis AJ; Marques B; Grichine A; Berthier S; Lenormand JL; Lardy B; Stasia MJ; Morel F
    Biochimie; 2007 Sep; 89(9):1145-58. PubMed ID: 17397983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase.
    Taura M; Miyano K; Minakami R; Kamakura S; Takeya R; Sumimoto H
    Biochem J; 2009 Apr; 419(2):329-38. PubMed ID: 19090790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leu505 of Nox2 is crucial for optimal p67phox-dependent activation of the flavocytochrome b558 during phagocytic NADPH oxidase assembly.
    Li XJ; Fieschi F; Paclet MH; Grunwald D; Campion Y; Gaudin P; Morel F; Stasia MJ
    J Leukoc Biol; 2007 Jan; 81(1):238-49. PubMed ID: 17060362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds.
    Doussiere J; Gaillard J; Vignais PV
    Biochemistry; 1999 Mar; 38(12):3694-703. PubMed ID: 10090757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships.
    Mizrahi A; Berdichevsky Y; Ugolev Y; Molshanski-Mor S; Nakash Y; Dahan I; Alloul N; Gorzalczany Y; Sarfstein R; Hirshberg M; Pick E
    J Leukoc Biol; 2006 May; 79(5):881-95. PubMed ID: 16641134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-A activates membrane bound multicomponent enzyme complex, NADPH oxidase in human neutrophils.
    Mishra A; Dwivedi PD; Verma AS; Ray PK
    Immunopharmacol Immunotoxicol; 1999 Nov; 21(4):683-94. PubMed ID: 10584204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method for effective and safe removal of membrane cholesterol from lipid rafts in vascular endothelial cells: implications in oxidant-mediated lipid signaling.
    Kline MA; O'Connor Butler ES; Hinzey A; Sliman S; Kotha SR; Marsh CB; Uppu RM; Parinandi NL
    Methods Mol Biol; 2010; 610():201-11. PubMed ID: 20013180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of cytochrome b-245 translocation in the PMA stimulation of the human neutrophil NADPH-oxidase.
    Higson FK; Durbin L; Pavlotsky N; Tauber AI
    J Immunol; 1985 Jul; 135(1):519-24. PubMed ID: 2987348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study.
    Masoud R; Bizouarn T; Houée-Levin C
    Redox Biol; 2014; 3():16-24. PubMed ID: 25462061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils.
    Shao D; Segal AW; Dekker LV
    FEBS Lett; 2003 Aug; 550(1-3):101-6. PubMed ID: 12935894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells.
    Han W; Li H; Villar VA; Pascua AM; Dajani MI; Wang X; Natarajan A; Quinn MT; Felder RA; Jose PA; Yu P
    Hypertension; 2008 Feb; 51(2):481-7. PubMed ID: 18195159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase activity of neutrophil specific granules: requirements for cytosolic components and evidence of assembly during cell activation.
    Ambruso DR; Cusack N; Thurman G
    Mol Genet Metab; 2004 Apr; 81(4):313-21. PubMed ID: 15059619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptic O2- -generating NADPH oxidase in dendritic cells.
    Elsen S; Doussière J; Villiers CL; Faure M; Berthier R; Papaioannou A; Grandvaux N; Marche PN; Vignais PV
    J Cell Sci; 2004 May; 117(Pt 11):2215-26. PubMed ID: 15126623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation.
    Sheppard FR; Kelher MR; Moore EE; McLaughlin NJ; Banerjee A; Silliman CC
    J Leukoc Biol; 2005 Nov; 78(5):1025-42. PubMed ID: 16204621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.