BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22056482)

  • 21. Regulation of NADPH oxidase (Nox2) by lipid rafts in breast carcinoma cells.
    Rao Malla R; Raghu H; Rao JS
    Int J Oncol; 2010 Dec; 37(6):1483-93. PubMed ID: 21042717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis.
    Johansson A; Jesaitis AJ; Lundqvist H; Magnusson KE; Sjölin C; Karlsson A; Dahlgren C
    Cell Immunol; 1995 Mar; 161(1):61-71. PubMed ID: 7867086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron transfer across the O2- generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component.
    Doussière J; Gaillard J; Vignais PV
    Biochemistry; 1996 Oct; 35(41):13400-10. PubMed ID: 8873608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes.
    Kabouridis PS; Janzen J; Magee AL; Ley SC
    Eur J Immunol; 2000 Mar; 30(3):954-63. PubMed ID: 10741414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47(phox).
    Choi HS; Cha YN; Kim C
    Int Immunopharmacol; 2006 Sep; 6(9):1431-40. PubMed ID: 16846837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction.
    Giniatullin A; Petrov A; Giniatullin R
    Neuroscience; 2015 Jan; 285():324-32. PubMed ID: 25463521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly.
    Vilhardt F; van Deurs B
    EMBO J; 2004 Feb; 23(4):739-48. PubMed ID: 14765128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family.
    Minakami R; Sumimotoa H
    Int J Hematol; 2006 Oct; 84(3):193-8. PubMed ID: 17050190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of lipid rafts for lysophosphatidylcholine-induced caspase-1 activation and reactive oxygen species generation.
    Schilling T; Eder C
    Cell Immunol; 2010; 265(2):87-90. PubMed ID: 20832779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells.
    Zhang AY; Yi F; Zhang G; Gulbins E; Li PL
    Hypertension; 2006 Jan; 47(1):74-80. PubMed ID: 16344372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anionic lipid-induced conformational changes in human phagocyte flavocytochrome b precede assembly and activation of the NADPH oxidase complex.
    Taylor RM; Riesselman MH; Lord CI; Gripentrog JM; Jesaitis AJ
    Arch Biochem Biophys; 2012 May; 521(1-2):24-31. PubMed ID: 22430035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils.
    Derochette S; Franck T; Mouithys-Mickalad A; Ceusters J; Deby-Dupont G; Lejeune JP; Neven P; Serteyn D
    Chem Biol Interact; 2013 Nov; 206(2):186-93. PubMed ID: 24060679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic study of the activation of the neutrophil NADPH oxidase by arachidonic acid. Antagonistic effects of arachidonic acid and phenylarsine oxide.
    Doussiere J; Bouzidi F; Poinas A; Gaillard J; Vignais PV
    Biochemistry; 1999 Dec; 38(49):16394-406. PubMed ID: 10587465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EquiNox2: A new method to measure NADPH oxidase activity and to study effect of inhibitors and their interactions with the enzyme.
    Derochette S; Serteyn D; Mouithys-Mickalad A; Ceusters J; Deby-Dupont G; Neven P; Franck T
    Talanta; 2015 Nov; 144():1252-9. PubMed ID: 26452955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recombinant form of mammalian gp91(phox) is active in the absence of p22(phox).
    Ezzine A; Souabni H; Bizouarn T; Baciou L
    Biochem J; 2014 Sep; 462(2):337-45. PubMed ID: 24888359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of silybin on phorbol myristate actetate-induced protein kinase C translocation, NADPH oxidase activity and apoptosis in human neutrophils.
    Varga Z; Ujhelyi L; Kiss A; Balla J; Czompa A; Antus S
    Phytomedicine; 2004 Feb; 11(2-3):206-12. PubMed ID: 15070174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the role of the carboxyl terminus of the gp91phox subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis.
    Zhen L; Yu L; Dinauer MC
    J Biol Chem; 1998 Mar; 273(11):6575-81. PubMed ID: 9497394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-cell optical imaging of the phagocyte NADPH oxidase.
    van Manen HJ; van Bruggen R; Roos D; Otto C
    Antioxid Redox Signal; 2006; 8(9-10):1509-22. PubMed ID: 16987007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibrio vulnificus VvpE inhibits mucin 2 expression by hypermethylation via lipid raft-mediated ROS signaling in intestinal epithelial cells.
    Lee SJ; Jung YH; Oh SY; Jang KK; Lee HS; Choi SH; Han HJ
    Cell Death Dis; 2015 Jun; 6(6):e1787. PubMed ID: 26086960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Despite structural similarities between gp91phox and FRE1, flavocytochrome b558 does not mediate iron uptake by myeloid cells.
    DeLeo FR; Olakanmi O; Rasmussen GT; Lewis TS; McCormick SJ; Nauseef WM; Britigan BE
    J Lab Clin Med; 1999 Sep; 134(3):275-82. PubMed ID: 10482313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.